

Visual SLAM and Smart Navigation

Shuhui Bu 布树辉

Northwestern Polytechnical University

Focuses on science and technology of <u>aviation</u>, <u>aerospace</u>, <u>marine</u>, and related fields.

- Background
- RTMapper
 - ♦ G-SLAM
 - MapFusion
 - SmartAnalysis
- Applications
- Conclusion

Future?

Traditional Navigation

A microprocessor allows navigation to specific fixes or routes

New Challenges

- Multi-type sensors: IMU, GPS, Image, LiDAR, RADAR ...
- High quality and real-time speed required

Simultaneous Localization and Mapping (SLAM) is the key technique to realize autonomous robot

- Fusing & joint optimizing multiple-source data
- Providing position, attitude and environment map simultaneously

Demo can be downloaded at: <u>http://www.adv-ci.com/blog/source/fastslam-gui/</u>

Visual SLAM – Keypoint Methods

Visual SLAM – Progress

Background

- RTMapper
 - G-SLAM
 - MapFusion
 - SmartAnalysis
- Applications
- Conclusion

Map?

BC 276

Middle Ages

Present

- Navigation map is a key technique to improve capability of robot/autonomous car/UAV
- Realtime perception not only uses map but also generates maps
- Realtime mapping and cooperation will bring various applications

Realtime Mapper

Problems in SLAM

- Mapping just for fast localization
- Mainly output 3D sparse pointcloud
- Low environment representation
- Low storage efficiency
- Low re-localization accuracy for long time interval
- DOM, DEM, 3D Map, HD Maps are required

Architecture of RTMapper

- Robustness
- Simple Operation
- Realtime map creation
- G-SLAM/RTMapper

(2) **G-SLAM**

- General platform for SLAM development
- Plugin architecture
- High performance components/utils
- C++ 11
- Python/Javascript bindings

(2) G-SLAM – Implemented SLAMs

DSO

ORB-SLAM

Yong Zhao, et al., General SLAM Framework and Benchmark, ICCV 2019

https://github.com/zdzhaoyong/GSLAM

3D Transformation

Method		GSLAM	Sophus	TooN	Ceres
	mult	14.9	34.3	17.8	159.1
CO(2)	trans	15.4	17.2	14.5	90.4
50(3)	exp	80.7	98.4	106.8	-
	log	55.7	Sophus 34.3 17.2 98.4 72.5 55.2 19.8 249.2 194.0 58.5 17.2 286.8 341.6	63.8	-
	mult	28.6	55.2	29.3	-
QE(2)	trans	19.3	19.8	12.1	-
SE(3)	exp	ns 19.3 19.8 p 152.4 249.2	99.2	-	
	log	152.7	Strain Sopilas 14.9 34.3 15.4 17.2 80.7 98.4 55.7 72.5 28.6 55.2 19.3 19.8 152.4 249.2 152.7 194.0 33.2 58.5 16.9 17.2 180.2 286.8 202.5 341.6	205.8	-
CIM(2)	mult	33.2	58.5	34.5	-
	trans	16.9	17.2	13.7	-
51M(3)	exp	180.2	286.8	229.0	_
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	303.6	-		

Dataset Loader

Dataset	Year	Environment	Туре
KITTI [28]	2012	outdoors	multi-cam, imu
TUMRGBD [64]	2012	indoors	RGBD
ICL [32]	2014	simulation	RGBD
TUMMono [17]	2016	indoors	mono
Euroc [8]	2016	indoors	stereo, imu
NPUDroneMap [7]	2016	aerial	mono
TUMVI [60]	2018	in/outdoors	stereo, imu
CVMono [4]	-	-	mono
ROS [57]	-	-	-

Estimator

A	Algorithm		Model
	F8-Point	[19]	Fundamental
	F7-Point	[33]	Fundamental
	E5-Stewenius	[62]	Essential
2D-2D	E5-Nister	[54]	Essential
	E5-Kneip	[42]	Essential
	H4-Point	[33]	Homography
	A3-Point	[4]	Affine2D
	P4-EPnP	[43]	SE3
	P3-Gao	[26]	SE3
2D 2D	P3-Kneip	[41]	SE3
20-50	P3-GPnP	[40]	SE3
	P2-Kneip	[38]	SE3
	T2-Triangulate	[39]	Translation
	A4-Point	[4]	Affine3D
3D-3D	S3-Horn	[34]	SIM3
	P3-Plane	[41]	SE3

Visual Vocabulary

Impler	nentation	Ours	DBoW2	DBoW3	FBoW
	ORB-4	67.3us	47.2ms	7.1ms	72.3us
Land	ORB-6	7.2ms	6.8 s	1.1 s	9.5ms
Load	SIFT-4	1.0ms	436.1ms	5.1ms	1.1ms
	ORB-4	437.9us	40.4ms	1.7ms	553.1us
Cours	ORB-6	34.4ms	4.8 s	632.4ms	20.6ms
Save	SIFT-4	4.4ms	437.6ms	6.7ms	2.7ms
	ORB-4	7.6 s	24.8 s	23.6 s	8.5 s
Their	ORB-6	230.5 s	1.1Ks	911.4 s	270.4 s
Irain	SIFT-4	23.5 s	327.7 s	299.0 s	18.7 s
	ORB-4	615.5us	2.1ms	1.9ms	862.4us
Trans	ORB-6	723.7us	6.0ms	4.9ms	1.2ms
	SIFT-4	1.1ms	10.3ms	9.2ms	11.5ms
	ORB-4	0.44MB	2.5MB	2.5MB	0.45MB
N	ORB-6	44.4MB	247.1MB	246.5MB	45.3MB
wiem	SIFT-4	5.8MB	7.8MB	7.8MB	5.8MB

Pilot Intelligent SLAM (PI-SLAM)

Win3D	MapWidget	SvarWidget	
1340	T:2016-01	18 07 51 4	19.96000000 U(+08)-245,Sub:294/200/282,FOV:0.00152948
Map:F			
			\sim
	10.00		and the second
1-	See 4	1	
AL.	3 - T	1	An Let M. Margare
	1 4	14 A	
1		1 4 24	

- High processing speed : 30 FPS for 1080p images
- Balance between SLAM and SfM: Support 40M pixel photo with high processing speed
- Multisource fusion : Vision and GPS data can be joint optimized
- Realtime DOM/DSM: Adaptive multi-band method for realtime DOM generation
- large area support : Data grid, hot swap

(2) G-SLAM: PI-SLAM

Semi-direct Tracking and Mapping

- Use direct method to fast tracking new frame's position, and then use keypoint method to realize precisely optimization
- Define a novel error function which incorporate depth and geometric measures
- Speed and accuracy balance can be achieved

(3) MapFusion

- Realtime fuse 2D maps (DOM), 2.5D maps (Terrain), 3D (Mesh)
- Capability of extension
- Integrating data process / analysis

Shuhui Bu, Yong Zhao, et al., Map2DFusion: Real-time Incremental UAV Image Mosaicing based on Monocular SLAM, IROS, 2016 http://www.adv-ci.com/blog/projects/map2dfusion/

- Feature based Visual SLAM System: PI-SLAM
- Automatic GPS and video synchronization: a graph based optimization is proposed to synchronize video time with GPS time from coarse to fine.
- Real-time orthoimage blender:

an adaptive weighted multi-band method to blend and visualize images incrementally in real-time.

Shuhui Bu, Yong Zhao, et al., Map2DFusion: Real-time Incremental UAV Image Mosaicing based on Monocular SLAM, IROS, 2016 <u>http://www.adv-ci.com/blog/projects/map2dfusion/</u>

(3) MapFusion – Map2DFusion

PhotoScan

RTMapper

TerrainFusion: Real-time Digital Surface Model Reconstruction based on Monocular SLAM

Wei Wang, et al., TerrainFusion:Real-time Digital Surface Model Reconstruction based on Monocular SLAM, iROS 2019

(3) MapFusion – TerrainFusion

- Realtime 2.5 DSM generation
- Improved DOM quality

- Large area support
- Adaptive quality support

Wei Wang, et al., TerrainFusion:Real-time Digital Surface Model Reconstruction based on Monocular SLAM, iROS 2019

DenseFusion: Large-Scale Online Dense Pointcloud and DSM Mapping for UAVs

L Chen, Y Zhao, S Xu, S Bu, P Han and W Gang

Lin Chen, et al., DenseFusion: Large-scale Online Dense Pointcloud and DSM Mapping for UAVS, iROS 2020

(3) MapFusion – DenseFusion

- Realtime and fast 3D dense pointclound and DSM generation
- Improved DOM quality
- Large area support

Lin Chen, et al., DenseFusion: Large-scale Online Dense Pointcloud and DSM Mapping for UAVS, iROS 2020

(4) SmartAnalysis

Scene Segmentation

Scene Recognition

Object Recognition

Shuhui Bu, et al. Pattern Recognition, 2016.

Qing Li, et al., Place Recognition Based on Deep Feature and Adaptive Weighting of Similarity Matrix, Neurocomputing, 2016. Part of source codes: <u>http://www.adv-ci.com/blog/source/pi-cnn</u> and <u>http://www.adv-ci.com/blog/source/pi-slic</u>

(4) SmartAnalysis – Change Detection

Pengcheng Han, et al., Aerial Image Change Detection using Dual Regions of Interest Networks, 2019

- Background
- RTMapper
 - ♦ G-SLAM
 - MapFusion
 - SmartAnalysis
- Applications
- Conclusion

Application - Targets

Feature Comparison

	Satellite / Aerial Photographic	Pix4D PhotoScan	
Speed	Offline / Batch	Offline / Batch	Online / Realtime
Security	High	Normal	High
Accuracy	High	Normal	Normal
Multi Information Fusion	No	No	Yes
Integration	No	No	Yes
Hardware Requirements	High	High	Low
SDK	No	No	Yes
Cost	High	High	Low
Functions	DEM, DOM, 3D	DEM, DOM, 3D	DEM, DOM, 3D, Navigation

Photoscan: <u>http://www.agisoft.com/</u> Pix4D: <u>https://pix4d.com/</u>

Hype Cycle

<u>https://defensesystems.com/articles/2017/05/13/3d.aspx</u> <u>https://www.dronedeploy.com/fieldscanner.html</u> <u>https://www.dji.com/cn/dji-terra</u> https://www.pix4d.com/product/pix4dreact

<u>http://www.adv-ci.com/blog/projects/map2dfusion</u> <u>http://www.rtmapper.com</u> <u>http://www.sibitu.cn</u>

Real time map creation, situation awareness, integrated surveillance and combat, intelligent navigation, collaborative navigation of cluster UAV Simple and easy-touse map creation with high performance, fully automatic control of plant protection UAV

Reliable planning, monitoring and analysis data support for exploration and mining Efficient and global monitoring, and automatically data acquisition 1

Weekly and regular 2D/3D map for buildings construction, reliable technical means for construction progress and quality tracking

Application – Object Detection & Analysis (1)

Plantation mapping

Tree detection and counting

Application – Object Detection & Analysis (2)

Application – Surveillance

Video surveillance

Application – Cooperation

Application – Smart Navigation

Application – Autonomous Control

Application – Autonomous Control

Application – Key Technologies

- Background
- RTMapper
 - ♦ G-SLAM
 - MapFusion
 - SmartAnalysis
- Applications
- Conclusion

- Realtime mapping plays import roles for navigation, GIS.
- Realtime mapping and cooperation will bring interesting applications.
- Integrating geometric information with semantic analysis will greatly improve the system intelligence.

CR.P.

THANK YOU

More information can be found at http://www.adv-ci.com