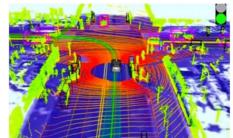


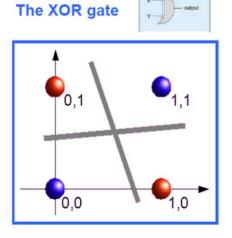
Intelligent Image and Graphics Processing Neural Network



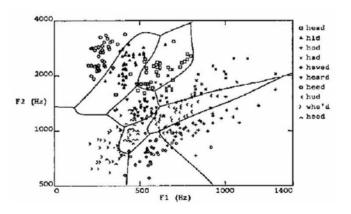
Learning highly non-linear functions

$f:X \to Y$

- f might be non-linear function
- X (vector of) continuous and/or discrete vars
- Y (vector of) continuous and/or discrete vars

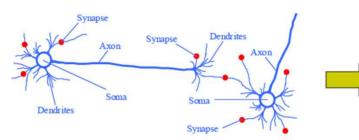


Speech recognition



Perceptron and neural nets

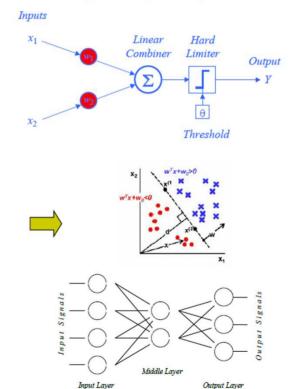
• From biological neuron to artificial neuron (perceptron)



Activation function

$$X = \sum_{i=1}^{n} x_i w_i \qquad \qquad \mathbf{Y} = \begin{cases} +1, & \text{if } \mathbf{X} \ge \omega_0 \\ -1, & \text{if } \mathbf{X} < \omega_0 \end{cases}$$

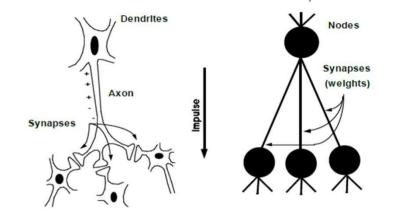
- Artificial neuron networks
 - supervised learning
 - gradient descent



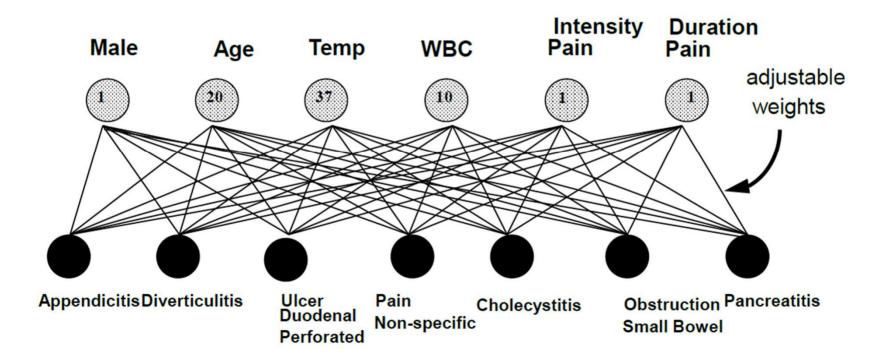
Т

Connectionist models

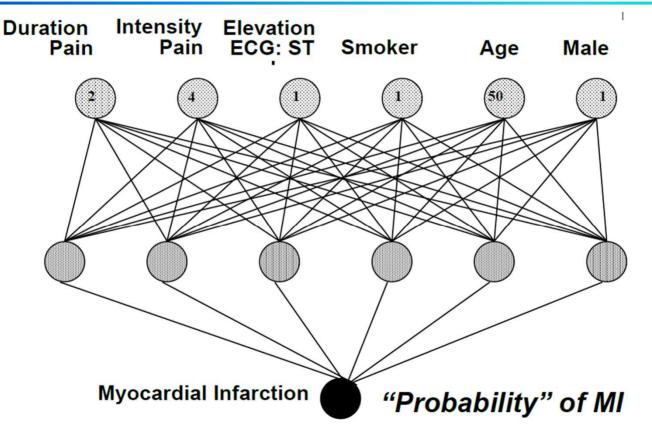
- Consider humans:
 - Neuron switching time
 - $\sim 0.001 \text{ second}$
 - Number of neurons
 - ~ 10¹⁰
 - Connections per neuron
 - ~ 104-5
 - Scene recognition time
 - ~ 0.1 second
 - 100 inference steps doesn't seem like enough
 - \rightarrow much parallel computation
- Properties of artificial neural nets (ANN)
 - Many neuron-like threshold switching units
 - Many weighted interconnections among units
 - Highly parallel, distributed processes



Abdominal pain perceptron

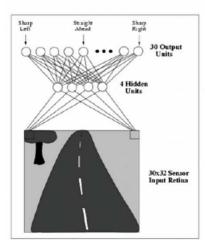


Myocardial infarction network



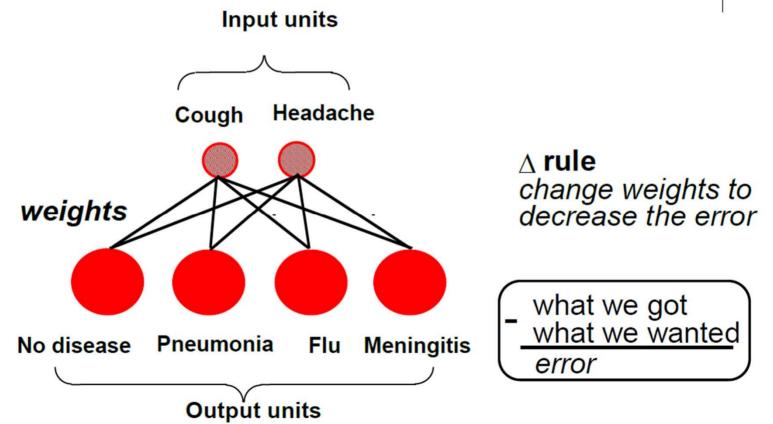
The "Driver" network

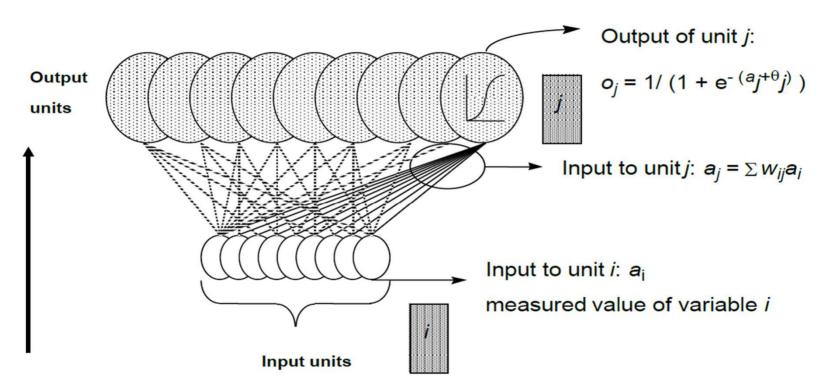
ALVINN [Pomerleau 1993]



	10010220	192013	2700	201901	10001	1000	0002	0007	10.00	CONV.	14292	201010	0.00
		1001			11				1.1	••	111		
*****					1.1	A. 12					1		
****					100								
					13	0.0							
		1.111.0	- 8		22						124		
	10.223	2.00 P		14146	122	* *	100			88 A	17		
	1.0.0	0.00		S 13	12	* *	÷.,	80		200	200	1.20	
	10.0.0	100	00	2.0.4	12			200	. 6. 3	÷.,	122	1.10	
	60.00.0	1.11.2	6.64	L	12.		200		. 32. 2	55 (Å	12.	22	
	1000	1.012	ЬH	584	13			E US		÷.		11	
	1966						22			2 4			
	13.373									÷	0.2	1.10	
N # # \$ \$	2.253	7 w k	2.2	12.5	323	* Y	100		100	* *	3.02	22	
6000 X X X	1,200		22.	0.00			8008			20	800	88.	
	1.20		12		2.2	1	1.1			20	2.00	66	6
	12.25		22	66-a				-64		836	100		
	100			100	-11	194				2		29	
	12.5		1		30				4.1	*			
		* * *	301		1			• •	**	* •			
					84					* *			
			111	1.0.00	64	44	M		68		100	80.	
		1000		204	44	-				-	1	10	
	4		12	12.5	22	11	199			**	***		
		***	22		333	23	133	2		21	200		
S. 2. S	A. 4. 4.	1000			33	2.3	0.2					88. A	83

Perceptrons

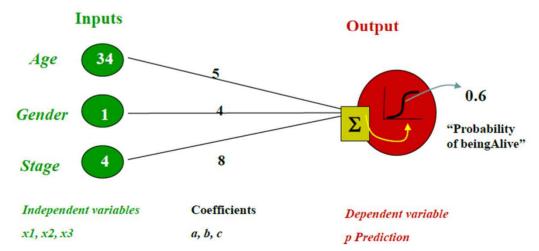




Jargon pseudo-correspondence

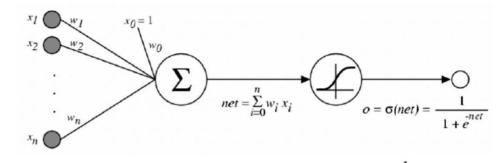
- Independent variable = input variable
- Dependent variable = output variable
- Coefficients = "weights"
- Estimates = "targets"

Logistic Regression Model (the sigmoid unit)



Т

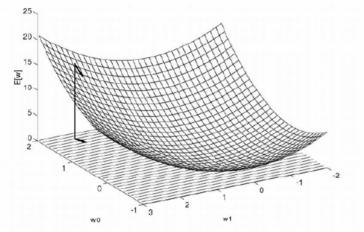
The perceptron learning algorithm



- Recall the nice property of sigmoid function $\frac{d\sigma}{dt} = \sigma(1-\sigma)$
- Consider regression problem f:X \rightarrow Y, for scalar Y: $y = f(x) + \epsilon$
- Let's maximize the conditional data likelihood

$$\vec{w} = \arg \max_{\vec{w}} \ln \prod_{i} P(y_i | x_i; \vec{w})$$
$$\vec{w} = \arg \min_{\vec{w}} \sum_{i} \frac{1}{2} (y_i - \hat{f}(x_i; \vec{w}))^2$$

Gradient descent



$$\frac{\partial E[\vec{w}]}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum (t_d - o_d)^2$$

Gradient

$$abla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

The perceptron learning rules

$$\begin{aligned} \frac{\partial E_D[\vec{w}])}{\partial w_j} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\ &= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_i} \frac{\partial net_d}{\partial w_i} \\ &= -\sum_d (t_d - o_d) o_d (1 - o_d) x_d^i \end{aligned}$$
Batch mode:
Do until converge:

1. compute gradient $\nabla \mathbf{E}_{D}[\mathbf{w}]$ 2. $\vec{w} = \vec{w} - \eta \nabla E_{D}[\vec{w}]$ Incremental mode: Do until converge: • For each training example *d* in *D* 1. compute gradient $\nabla \mathbf{E}_d[\mathbf{w}]$ 2. $\vec{w} = \vec{w} - \eta \nabla E_d[\vec{w}]$ where

$$\nabla E_d[\vec{w}] = -(t_d - o_d)o_d(1 - o_d)\vec{x}_d$$

MLE vs MAP

• Maximum conditional likelihood estimate

$$ec{w} = rg\max_{ec{w}} \ln \prod_i P(y_i | x_i; ec{w})$$

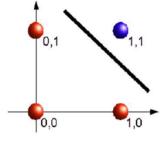
 $ec{w} \leftarrow ec{w} + \eta \sum_d (t_d - o_d) o_d (1 - o_d) ec{x}_d$

• Maximum a posteriori estimate

$$\vec{w} = \arg \max_{\vec{w}} \ln p(\vec{w}) \prod_{i} P(y_i | x_i; \vec{w})$$

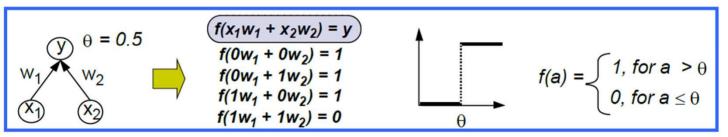
$$\vec{w} \leftarrow \vec{w} + \eta \left(\sum_{d} (t_d - o_d) o_d (1 - o_d) \vec{x}_d - \lambda \vec{w}\right)$$

What decision surface does a perceptron defines?



X	У	Z (color)
0	0	1
0	1	1
1	0	1
1	1	0

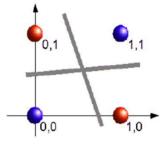
NAND



some possible values for w_1 and w_2

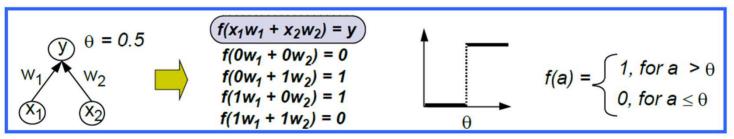
Wı	W ₂
0.20	0.35
0.20	0.40
0.25	0.30
0.40	0.20

What decision surface does a perceptron defines?

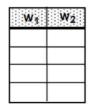


X	у	Z (color)
0	0	0
0	1	1
1	0	1
1	1	0

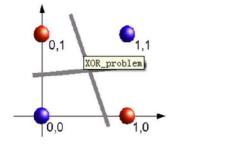
NAND



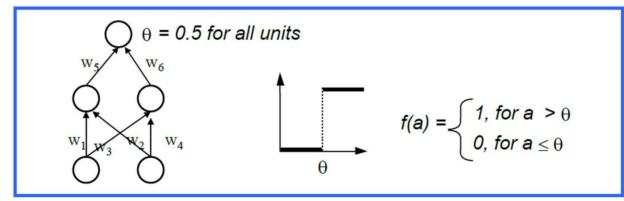
some possible values for w_1 and w_2



What decision surface does a perceptron defines?

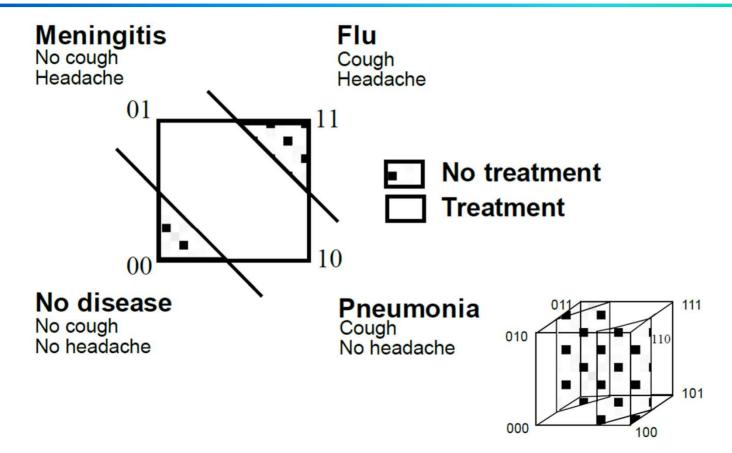


X	У	Z (color)
0	0	0
0	1	1
1	0	1
1	1	0



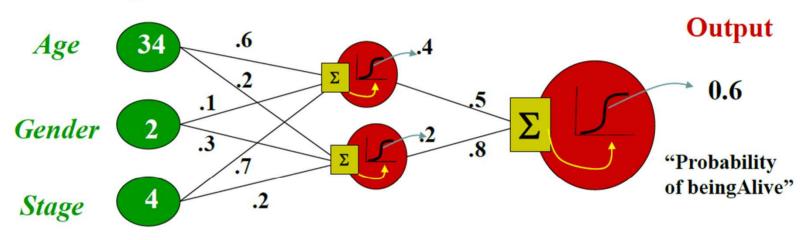
a possible set of values for $(W_1, W_2, W_3, W_4, W_5, W_6)$: (0.6,-0.6,-0.7,0.8,1,1)

Non linear separation



Neural network model

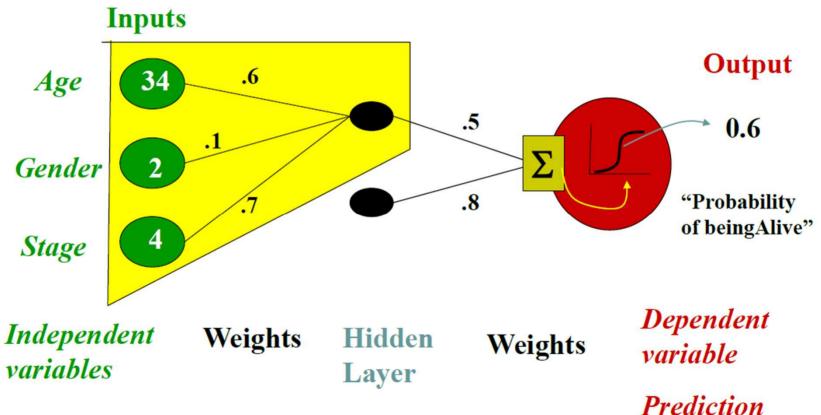
Inputs



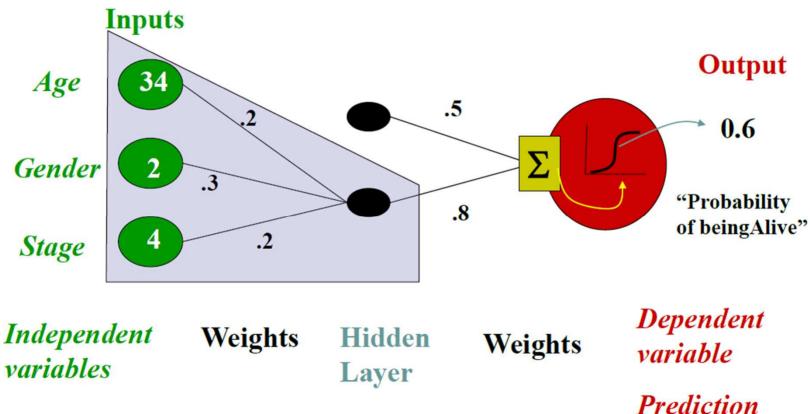
IndependentWeightsHiddenWeightsDependentvariablesLayerDependentVariable

Prediction

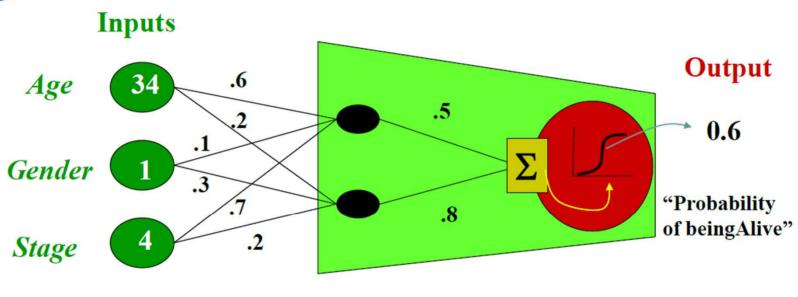
Combined logistic models



Combined logistic models



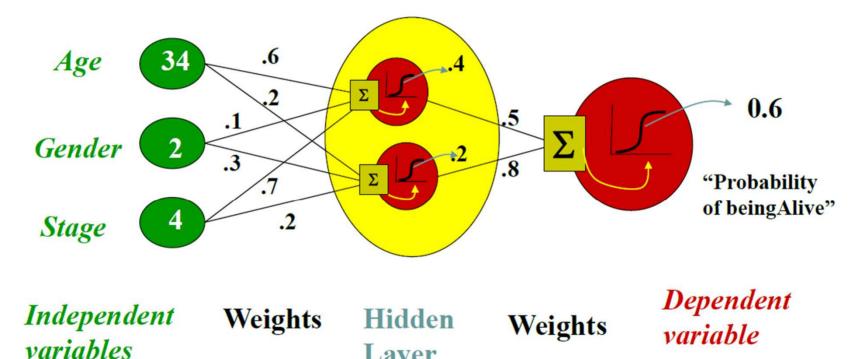
Combined logistic models



IndependentWeightsHiddenWeightsDependentvariablesLayerWeightsPeriod

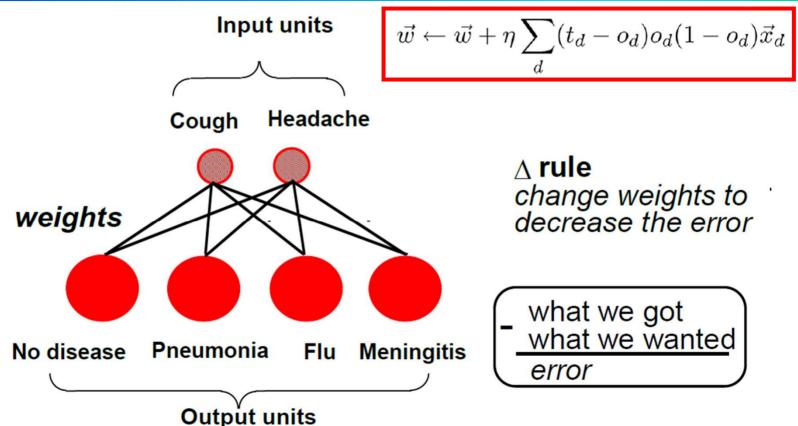
Prediction

Not really, no target for hidden units

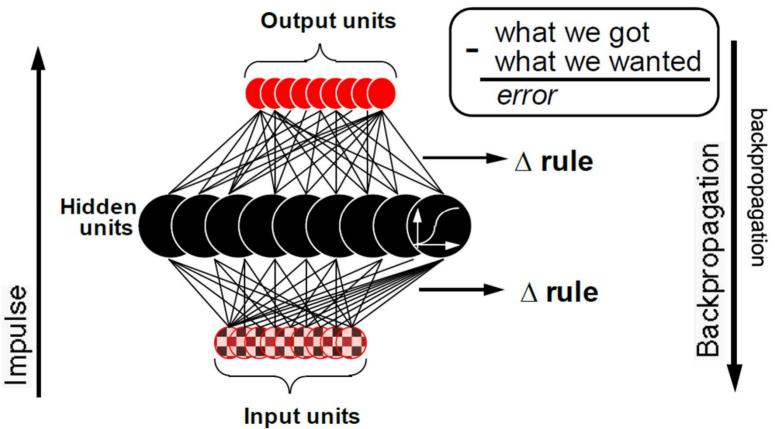


Layer

Prediction



Hidden units and backpropagation



Backpropagation algorithm

- Initialize all weights to small random numbers
 Until convergence, Do
 - Input the training example to the network and compute the network outputs
 - 1. For each output unit k

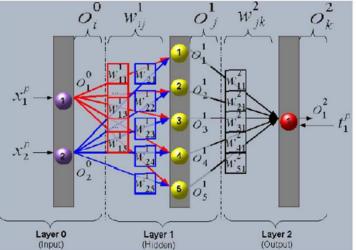
$$\delta_k \leftarrow o_k^2 (1 - o_k^2) (t - o_k^2)$$

2. For each hidden unit h

$$\delta_h \leftarrow o_h^1 (1 - o_h^1) \sum_{k \in outputs} w_{h,k} \delta_k$$

3. Undate each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$
 where $\Delta w_{i,j} = \eta \delta_j x^j$



More on backpropagation

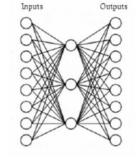
- It is doing gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Often include weight momentum α

$$\Delta w_{i,j}(t) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(t-1)$$

- Minimizes error over *training* examples
 - Will it generalize well to subsequent testing examples?
- Training can take thousands of iterations, → very slow!
- Using network after training is very fast

Learning hidden layer representation

• A network:



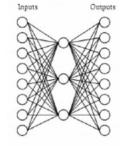
• A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

• Can this be learned?

Learning hidden layer representation

• A network:



Learned hidden layer representation:

Input	Hidden				Output	
Values						
10000000	\rightarrow .89	.04	.08	\rightarrow	10000000	
01000000	\rightarrow .01	.11	.88	\rightarrow	01000000	
00100000	\rightarrow .01	.97	.27	\rightarrow	00100000	
00010000	\rightarrow .99	.97	.71	\rightarrow	00010000	
00001000	\rightarrow .03	.05	.02	\rightarrow	00001000	
00000100	\rightarrow .22	.99	.99	\rightarrow	00000100	
00000010	\rightarrow .80	.01	.98	\rightarrow	00000010	
00000001	\rightarrow .60	.94	.01	\rightarrow	00000001	

Training



Expressive capabilities of ANNs

Boolean functions:

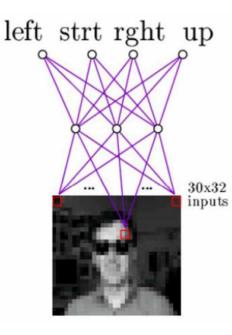
- Every Boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units

• Continuous functions:

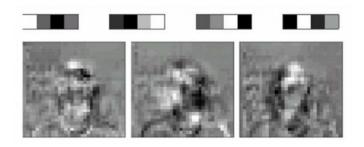
- Every bounded continuous function can be approximated with arbitrary small error, by network with one hidden layer [Cybenko 1989; Hornik et al 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Application: ANN for face recognition

• The model

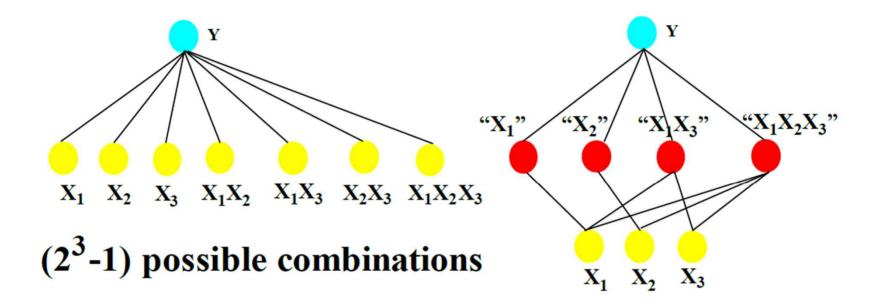


• The learned hidden unit weights



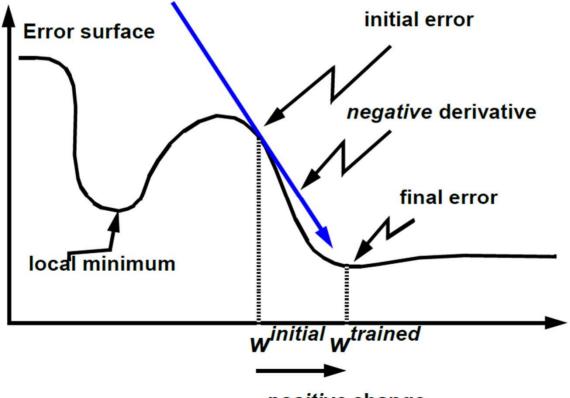
Typical input images

 $\rm http://www.cs.cmu.edu/{\sim}tom/faces.html$

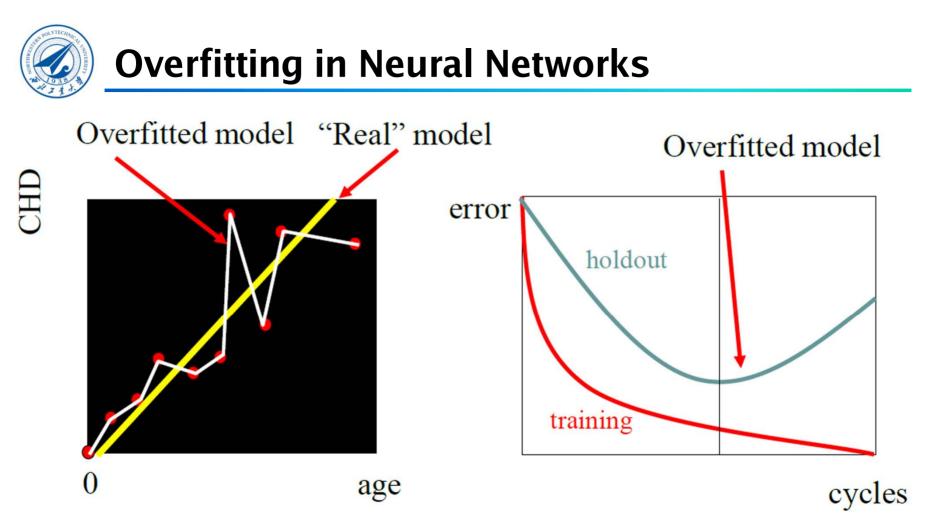


 $Y = a(X_1) + b(X_2) + c(X_3) + d(X_1X_2) + \dots$

Minimizing the Error



positive change



Alternative error functions

• Penalize large weights:

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{k,d} - o_{k,d})^2 + \gamma \sum_{i,j} w_{j,i}^2$$

• Training on target slopes as well as values

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{k,d} - o_{k,d})^2 + \mu \sum_{j \in inputs} \left(\frac{\partial t_{k,d}}{\partial x_d^j} - \frac{\partial o_{k,d}}{\partial x_d^j} \right)$$

- Tie together weights
 - E.g., in phoneme recognition

Artificial Neural Network - What you should know

- Highly expressive non-linear functions
- Highly parallel network of logistic function units
- Minimizing sum of squared training errors
 - Gives MLE estimates of network weights if we assume zero mean Gaussian noise on output values
- Minimizing sum of sq errors plus weight squared (regularization)
 - MAP estimates assuming weight priors are zero mean Gaussian
- Gradient descent as training procedure
 - How to derive your own gradient descent procedure
- Discover useful representations at hidden units
- Local minima is greatest problem
- Overfitting, regularization, early stopping

Artificial Neural Network - What you should know

- Highly expressive non-linear functions
- Highly parallel network of logistic function units
- Minimizing sum of squared training errors
 - Gives MLE estimates of network weights if we assume zero mean Gaussian noise on output values
- Minimizing sum of sq errors plus weight squared (regularization)
 - MAP estimates assuming weight priors are zero mean Gaussian
- Gradient descent as training procedure
 - How to derive your own gradient descent procedure
- Discover useful representations at hidden units
- Local minima is greatest problem
- Overfitting, regularization, early stopping