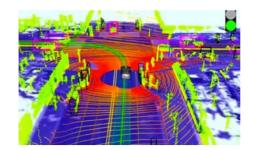


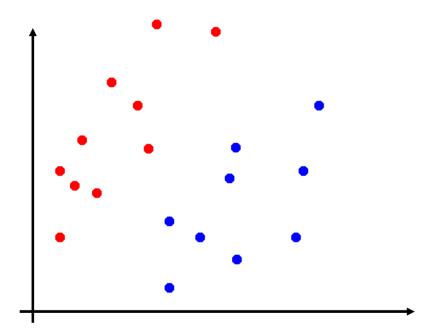
Intelligent Image and Graphics Processing 智能图像图形处理

布树辉

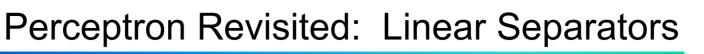
bushuhui@nwpu.edu.cn http://www.adv-ci.com



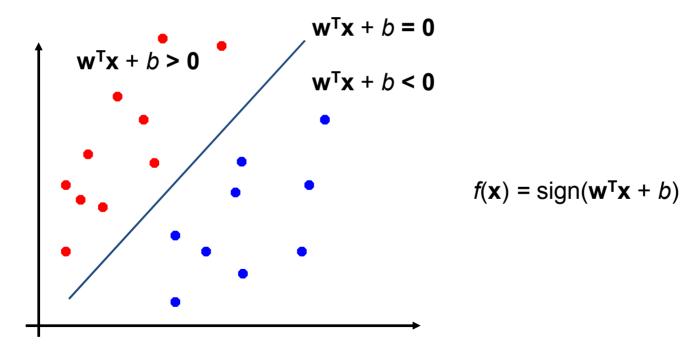
Support Vector Machine



How to find a model to separate two types data?

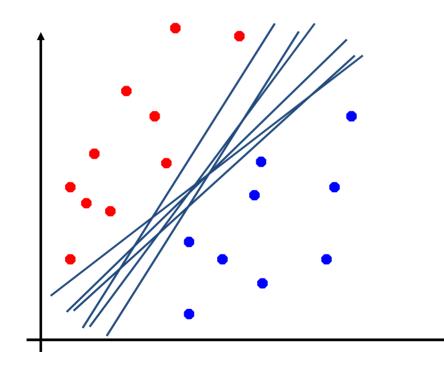


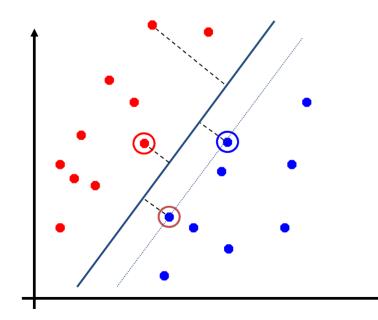
• Binary classification can be viewed as the task of separating classes in feature space:



Linear Separators

• Which of the linear separators is optimal?



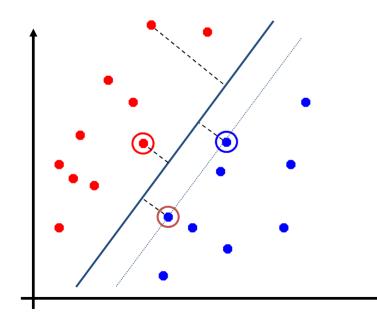


Functional margin: $\hat{r}_i = y_i(wx_i + b)$

The margin for all training data:

$$\hat{r} = \min \hat{r}_i$$
 (i=1,...N)

Geometric Margin



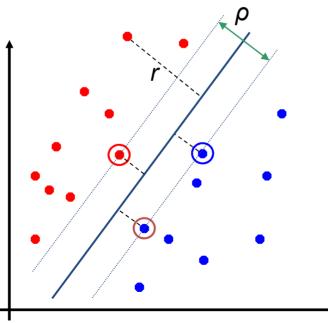
 $let \|w\| = 1$

Then the functional margin become geometric margin:

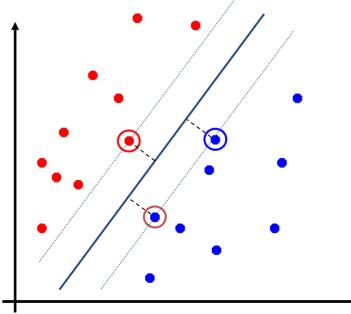
$$r_i = y_i \left(\frac{wx_i + b}{\|w\|} \right)$$

Classification Margin

- Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are *support vectors*.
- **Margin** ρ of the separator is the distance between support vectors.



- Maximizing the margin is good according to intuition and PAC theory.
- Implies that only support vectors matter; other training examples are ignorable.



Linear SVM

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}, \mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \leq -\rho/2 \quad \text{if } y_{i} = -1 \qquad \Longleftrightarrow \qquad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq \rho/2$$
$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \geq \rho/2 \quad \text{if } y_{i} = 1 \qquad \Longleftrightarrow \qquad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq \rho/2$$

• For every support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is

$$r = \frac{\mathbf{y}_s(\mathbf{w}^T \mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

• Then the margin can be expressed through (rescaled) **w** and b as: $\rho = 2r = \frac{2}{\|\mathbf{w}\|}$

• Then we can formulate the *quadratic optimization problem:*

$$\max_{w,b} \qquad \gamma$$

s.t. $y_i \left(\frac{w}{\|w\|} \cdot x_i + \frac{b}{\|w\|} \right) \ge \gamma, \quad i = 1, 2, \cdots, N$

• Considering the relation between functional margin and geometric margin:

$$\max_{w,b} \quad \frac{\hat{\gamma}}{\|w\|}$$

s.t. $y_i(w \cdot x_i + b) \ge \hat{\gamma}, \quad i = 1, 2, \dots, N$

Linear SVM

$$\max_{w,b} \frac{\hat{\gamma}}{\|w\|}$$

s.t. $y_i(w \cdot x_i + b) \ge \hat{\gamma}, \quad i = 1, 2, \dots, N$
$$\hat{\gamma} = 1$$

$$\min_{w,b} \frac{1}{2} \|w\|^2$$

s.t. $y_i(w \cdot x_i + b) - 1 \ge 0, \quad i = 1, 2, \dots, N$

$$\min_{w,b} \quad \frac{1}{2} \|w\|^2$$
s.t. $y_i(w \cdot x_i + b) - 1 \ge 0$, $i = 1, 2, \dots, N$
Introducing Lagrange multiplier

$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{N} \alpha_i y_i (w \cdot x_i + b) +$$

$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 -\sum_{i=1}^N \alpha_i y_i (w \cdot x_i + b) + \sum_{i=1}^N \alpha_i$$

$$\max_{\alpha} \min_{w,b} L(w,b,\alpha)$$

$$w = \sum_{i=1}^N \alpha_i y_i x_i$$

$$\sum_{i=1}^N \alpha_i y_i = 0$$

$$\nabla_w L(w,b,\alpha) = w - \sum_{i=1}^N \alpha_i y_i x_i = 0$$

$$\nabla_b L(w,b,\alpha) = \sum_{i=1}^N \alpha_i y_i = 0$$

$$L(w,b,\alpha) = \frac{1}{2} ||w||^{2} - \sum_{i=1}^{N} \alpha_{i} y_{i} (w \cdot x_{i} + b) + \sum_{i=1}^{N} \alpha_{i} \qquad w = \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}$$
$$L(w,b,\alpha) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{N} \alpha_{i} y_{j} \left(\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j} \right) \cdot x_{i} + b \right) + \sum_{i=1}^{N} \alpha_{i}$$
$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i}$$

Therefore:
$$\min_{w,b} L(w,b,\alpha) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{j} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{i} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{i} y_{i} y_{i} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{i} y_{i} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{i} y_{i} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i} \alpha_{i} y_{i} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha$$

$$\max_{\alpha} -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{N} \alpha_{i}$$

s.t.
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \qquad \alpha_{i} \ge 0 , \quad i = 1, 2, \cdots, N$$

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{N} \alpha_{i}$$

s.t.
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \ge 0 , \quad i = 1, 2, \cdots, N$$

$$\begin{split} \min_{\alpha} & \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{N} \alpha_{i} \\ \text{s.t.} & \sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \\ & \alpha_{i} \ge 0 \text{, } i = 1, 2, \cdots, N \end{split}$$

$$\begin{aligned} \text{alpha} = \text{quadprog}(Y^{*}\mathsf{K}^{*}\mathsf{Y}, - \text{ones}(\mathsf{n}, 1), \dots \\ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \\ \end{bmatrix}, \\ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \\ \end{bmatrix} \end{split} \\ \mathsf{K} = X^{*}\mathsf{X} \text{ ;} \end{aligned}$$

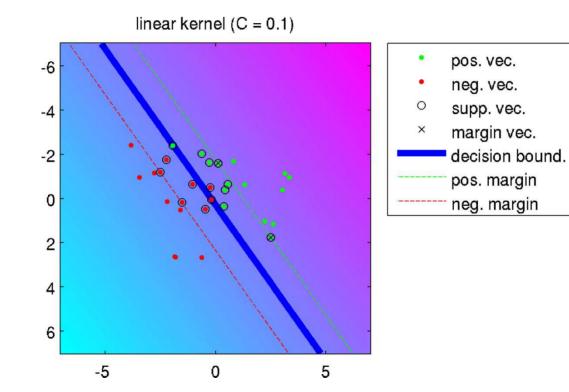
[], optimset('display','off','largescale', 'off', 'algorithm', 'active-set'));

$$\alpha^* = (\alpha_1^*, \alpha_2^*, \dots, \alpha_i^*)^{\mathrm{T}}$$

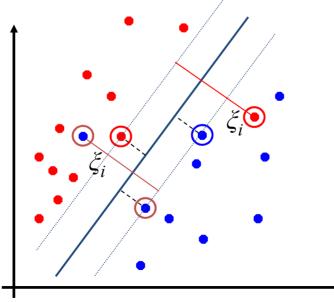
$$w^* = \sum_{i=1}^{N} \alpha_i^* y_i x_i$$

$$b^* = y_j - \sum_{i=1}^{N} \alpha_i^* y_i (x_i \cdot x_j)$$

$$f(x) = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_i^* y_i (x \cdot x_i) + b^*\right)$$



- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called *soft*.



• The old formulation:

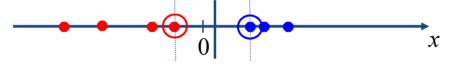
Find w and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all $(\mathbf{x}_i, y_i), i=1..n$: $y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

• Modified formulation incorporates slack variables:

Find w and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} + C\Sigma\xi_{i}$ is minimized and for all $(\mathbf{x}_{i}, y_{i}), i=1..n$: $y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i}+b) \ge 1-\xi_{i}$, $\xi_{i} \ge 0$

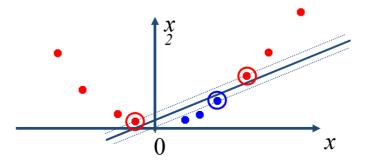
• Parameter *C* can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

• Datasets that are linearly separable with some noise work out great:

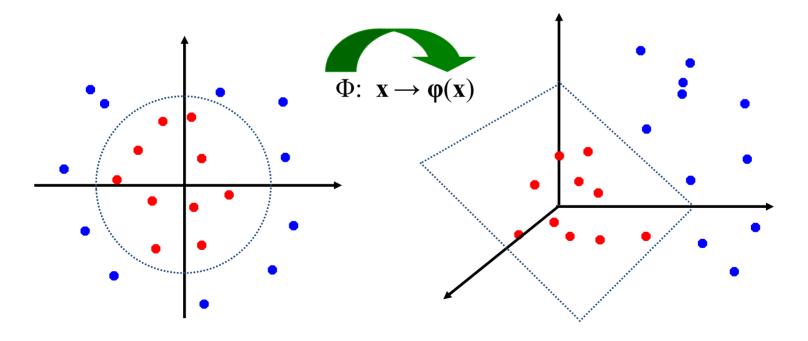


• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:



• General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:



- Linear: $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_i$
 - Mapping Φ : $\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$, where $\boldsymbol{\phi}(\mathbf{x})$ is \mathbf{x} itself
- ٠
- Polynomial of power $p: \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$ Mapping $\Phi: \mathbf{x} \rightarrow \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x}) has \begin{pmatrix} d+p \\ p \end{pmatrix}$ dimensions
- $\frac{\|\mathbf{x}_i \mathbf{x}_j\|^2}{2\sigma^2}$ Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_i) = e$ ٠
 - Mapping $\Phi: \mathbf{x} \rightarrow \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to a *function* (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has *intrinsic* dimensionality d (the mapping is not onto), but linear separators in it correspond to non-linear separators in original space.

• Dual problem formulation:

Find $\alpha_1 \dots \alpha_n$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

• The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

• Optimization techniques for finding α_i 's remain the same!

RBF kernel (C = 1, gamma = 0.25)

