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Support Vector Machine



Problem

How to find a model to separate 

two types data?



Perceptron Revisited:  Linear Separators 

• Binary classification can be viewed as the task of separating 

classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)



Linear Separators

• Which of the linear separators is optimal? 



Functional Margin

�̂� � �� ��� � 	Functional margin:

The margin for all training data:

�̂ � min �̂� (i=1,…N)



Geometric Margin
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Then the functional margin become 

geometric margin: 
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Classification Margin

• Distance from example xi to the separator is 

• Examples closest to the hyperplane are support vectors. 

• Margin ρ of the separator is the distance between support vectors.
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Maximum Margin Classification

• Maximizing the margin is good according to intuition and PAC theory.

• Implies that only support vectors matter; other training examples are 

ignorable. 



Linear SVM

• Let training set {(xi, yi)}i=1..n, xi∈∈∈∈Rd, yi ∈∈∈∈ {-1, 1} be separated by a hyperplane with

margin ρ. Then for each training example (xi, yi):

• For every support vector xs the above inequality is an equality.    After rescaling w and 

b by ρ/2 in the equality, we obtain that distance between each xs and the hyperplane

is 

• Then the margin can be expressed through (rescaled) w and b as:

wTxi + b ≤ - ρ/2 if yi = -1

wTxi + b ≥ ρ/2 if yi = 1
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Linear SVM

• Then we can formulate the quadratic optimization problem: 

• Considering the relation between functional margin and geometric margin:



Linear SVM



The Optimization Problem Solution

Introducing Lagrange multiplier



The Optimization Problem Solution



The Optimization Problem Solution

Therefore:



The Optimization Problem Solution



How to find alpha ?

alpha = quadprog(Y*K*Y, - ones(n,1), ...

[], [], ...

y, 0, ...

zeros(n,1), C * ones(n,1), ...

[], optimset('display','off','largescale', 'off', 'algorithm', 'active-set')) ;

K = X'*X ;



Determining the model parameter



Example



Soft Margin Classification 

• What if the training set is not linearly separable?

• Slack variables ξi can be added to allow misclassification of 

difficult or noisy examples, resulting margin called soft.

ξi

ξi



Soft Margin Classification 

• The old formulation:

• Modified formulation incorporates slack variables:

• Parameter C can be viewed as a way to control overfitting:  it “trades off” the 

relative importance of maximizing the margin and fitting the training data.

Find w and b such that

Φ(w) =wTw is minimized 

and for all (xi ,yi), i=1..n :       yi (wTxi + b) ≥ 1

Find w and b such that

Φ(w) =wTw + CΣξi   is minimized 

and for all (xi ,yi), i=1..n :       yi (wTxi + b) ≥ 1 – ξi, ,    ξi ≥ 0



Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space:
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Non-linear SVMs:  Feature spaces

• General idea:   the original feature space can always be mapped to some 

higher-dimensional feature space where the training set is separable:

Φ:  x → φ(x)



Examples of Kernel Functions

• Linear: K(xi,xj)= xi
Txj

– Mapping Φ:    x → φ(x), where φ(x) is x itself

• Polynomial of power p: K(xi,xj)= (1+ xi
Txj)

p

– Mapping Φ:    x → φ(x), where φ(x) has           dimensions 

• Gaussian (radial-basis function): K(xi,xj) =

– Mapping Φ:  x →  φ(x), where φ(x) is infinite-dimensional: every point is mapped to a 
function (a Gaussian); combination of functions for support vectors is the separator.

• Higher-dimensional space still has intrinsic dimensionality d (the mapping is not 
onto), but linear separators in it correspond to non-linear separators in original 
space.
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Non-linear SVMs Mathematically

• Dual problem formulation:

• The solution is:

• Optimization techniques for finding αi’s remain the same!

Find α1…αn such that

Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and 

(1) Σαiyi = 0

(2) αi ≥ 0 for all αi

f(x) = ΣαiyiK(xi, xj)+ b



Example


