Intelligent Image and
Graphics Processing

Deep Reinforcement Learning

-‘f.i Reinforcement Learning
Z31%

AL aE > A AR S B O BA G o8 “IRARIR” 22 I IS CE DAL, Al
SR AE MR A 2], RIS AN FAT A PP P S A5 5 R 3R A T
A TEFERMS LUSEIL S > H bR ok B I PRI S 1545 5 38 3 Rk 8 [l 3 elsm AL
5, WA RGN H ARt 2 WA RS 5 .

Definition (Reinforcement Learning |Sutton and Barto, 1998

“Reinforcement learning is learning what to do—how to map
situations to actions—so as to maximize a numerical reward signal.
The learner is not told which actions to take, as in most forms of
machine learning, but instead must discover which actions yield

the most reward by trying them.”

Agent and Environment

J,i)\

m Agent:
m Situated in an environment
m Subject of learning

m Perceives (probably only a portion) of the environment's state
— e.g. sonar, camera, ...

m Can perform actions to act in or change the environment
— €.g. move, turn, ...

m Environment:

m Everything outside the agent
m Observable state
m Offers reward / punishment (RL)

Classification of Learning Techniques

m Supervised Learning needs labeled training samples

m Unsupervised Learning has no information on the correct solution;
similar structures are found

m Reinforcement Learning uses a (delayed) feedback of the
environment as measure, without stating the correct solution

Example 1 (Reinforcement Learning).

Scenario: An agent hast to learn a board game

Formulation: The agent receives a reward if it won the game and
a punishment (negative reward) if it loses. All other situation
result in neutral feedbacks.

‘iﬂl& .ﬁ;

Reinforcement Learning process

z 47

state

action

reward

Interaction with environment via states and actions
Reward as feedback for the last action
Agent discovers usability of actions during learning

Goal: Find policy, that maximizes discounted returns

J&Ji)’.

m n m + mm |+ 1

Reinforcement Learning in Single Agent Systems

Reward function offers numerical rewards for state-action pairs
Goal: Learn successful policy for any state

Maximizing this reward leads to proper behavior

No labeled examples, i.e. no information on correct behavior
Agent is not told which action to choose

Trial-and-error

Learning agent has often no knowledge about its environment
Difficulty: Current actions may influence future rewards

Formulation as Markov Decision Process

The Markov Property

"pJ,i)"

m Environment’s behavior may depend on the complete history:
/
P [St-l-l =S, ht+1 =71 I St,dt, I't, St—1,dt—-1,---, 10,30, 30]

m If the state signal has the Markov Property, the response at t + 1
only depends on the state and action at time t:

P [St—l—l =5, ret1 = r | St at]

m |f the system has the Markov property, both probability
distributions are equal!

Markov Decision Process

Definition 1 (Markov Decision Process).

A Markov Decision Process is defined by a tuple (S, A, r,d) with:

Finite set of states S
Finite set of actions A
Reward function r

State transition function ¢

The state signal has the Markov property

s¢ € S is perceived in time t and a; € A is executed

m Environment responds with r; = r(s;, a;) € R and transitions

to state sy 1 = 0(st, az)
0, r are part of the environment and may be unknown

m Policy m determines agent’s behavior:
T:S—> A

m 7(s;) = a; decides upon action in state s;
m But: what is the optimal policy?

S1 — - S2 G 7T('Sl) = al’ight
S4 7|~ S5 Se (A = A

Figure: lllustration of a policy

(State) Value Function

Goal: Learn a policy that maximizes the sum of discounted
rewards

Cumulated discounted value V™ (s;) starting in s; following
arbitrary policy 7:

oo
V7(st) = re + yres1 + ’)/2ft+2 s el Z'Y’rt—ki
wr

Discount factor 0 < v < 1: value of delayed rewards in relation to
immediate rewards

m Reward received i steps in future are discounted by ~'
m 7 — 0 consider only immediate rewards
m v — 1 higher influence of distant rewards

Again: Optimal policy?

Optimal Policy

EEL
m Agent has to learn policy 7 that maximizes V™ (s) for all states s

m Optimal Policy 7*:
7™ V™ (s) > V™(s) Vs € S,Vn

m V™ (s) is the sum of discounted rewards for an optimal policy
starting in s

m V*(s) is short for V™ (s)

= The agent’s goal is to learn an optimal policy 7*

Learning an Optimal Policy

J&Ji,)’.

m For V* it holds:
V*(s1) > V*(s2) & agent prefers s; over s,
m Bellman optimality:
¥is)= max r(s,a) +~yV*(d(s,a))

m But: V* values states and not actions!

m Optimal action in state s is action a, that maximizes the sum of
reward r(s,a) and V*-value of the successor state:

a(s) = argmax (r(s,a) +~vV*(i(s, a)))

(State-Action) Value Function

1%
m Q(s, a) is the maximal discounted cumulated reward that can be
received after executing action a in state s

Q(s,a) = r(s,a) +yV*(i(s, a))

m Assumption: agent follows an optimal policy after performing
action a

m Till now, 7*(s) requires § and r to be known:
7*(s) = argmax (r(s, a) + yV*(I(s, a)))
=]
m 7*(s) in terms of Q(s, a):
7*(s) = argmax Q(s, a)
a

m Sufficient to learn Q(s, a)
— No knowledge of 9, r needed

Approaches for Reinforcement Learning

J&Ji,)’.

m Policy lteration:

m Approximates V-function and computes 7 thereof
m Needs knowledge on the environment's model (J and r as well as
the probability distributions in the non-deterministic setting)

m Monte Carlo:

m Approximates V/(s) by averaging rewards received after visiting
state s
m Quality of approximation increases over time

m [emporal Difference:

m Iterative reduction of differences between estimates for any
state-action pair at different points of time
m Example: Q-Learning

Q-Learning : Off-policy TD Control

m How to learn from delayed rewards?
— lterative approximation

m Close relation between V*(s) and Q(s, a):

V*(s) = max Q(s, a')

a

m Recursive formulation of Q(s, a):

Q(s,a) = r(s,a) +7V7*(4(s, a))
=r(s,a)+ 7 L Q(d(s, a), &)

Q-Learning Algorithm

J&Ji)’.

~

Q is the agent’s estimation of Q
Agent stores estimated Q-values for each state-action pair

The agent performs action a in state s and observes the reward r
and the successor state s’

Update of the Q-estimation after each step

~

Q(s, a) = r + ymax Q(s', d)

Update only requires Q

r and s’ are known to the agent because the update is performed
after the environment's reaction

No knowledge of reward function or state transition function
needed

Q-Learning Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, s’
Q(s,a) « Q(s,a) + a[r + ymaxy Q(s',a’) — Q(s,a)]
s — g

until s is terminal

Q-Learning in a Grid World

w 72[100 i 90 wl()() »
63 |63

' - '

right

Initial state: Sl Next state: 52

Figure: Grid World

[f‘lci ell, Machine Learning]

6(51, aright) =¥r4% mﬁx a(527 a’)

=0+ 0.9 - max{63,81,100}
= 90

f,} Action Selection

‘p],i\/!ﬂ

m Agent has to perform an action a € A in each step
m Always choosing action a = argmax Q(s, a’)
af
m Exploits gained knowledge
m But: Prefers state-action pairs with high values in the beginning
m Important: visit unknown state-action pairs (s, a) to gain new
information (exploration)

— Exploration/exploitation Trade-off

e-greedy: Choose a random action with probability £ and with
probability (1 —) an action with highest Q-value
Boltzmann: Probability to select action a in state s:

_ __exp(Q(s,a)/7)
P(a | S) — Ea’GA exp(Q(s,a')/7)

Convergence

Q-Learning with a tabular representation of the knowledge
converges to the real Q-values under following assumptions:

The system is a deterministic MDP

The rewards are bound:
VsVa: |r(s,a)| <c

All state-action pairs (s, a) are visited infinitely often

“)) SARSA : On-Policy TD Control

"&J,i)"

Q-Learning: O (s,a) = E.[r+ymax O (s,a)ls,a]

SARSA: O (s,a)=E.[r+yQ (s,a)|s,a]

sa Q(s.a) sa Qsa)
r I
d SARSA . Q-LEARNING
2@ Qs.a) h a Q(s'.a)
a"

SARSA backs up using the action a’ actually chosen by the behaviour policy.

Q-LEARNING backs up using the (Q-value of the action a’* that is the best next
action, i.e. the one with the highest Q value, Q(s'.a""). The action actually
chosen by the behaviour policy and followed is not necessarily a'*

SOV TECH,

4)) SARSA Algorithm

/J.iz".

Initialize Q(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s’ using policy derived from Q (e.g., e-greedy)
Q(s.a) — Q(s,a) + afr +1Q(s',a') — Q(s,a))
s— 8§ a+—a;

until s is terminal

2016-7-14

Deep Reinforcement Learning

"pJ,i)"

» Can we apply deep learning to RL?
» Use deep network to represent value function / policy / model
» Optimise value function / policy /model end-to-end

» Using stochastic gradient descent

Bellman Equation

‘ﬁgi)"

» Value function can be unrolled recursively

Q"(s,a) =E [re41 +yres2 + Yres3+ ... | s, al
=Ey [r+~vQ"(s",d") | s, a]

» Optimal value function Q*(s, a) can be unrolled recursively

Q*(s,a) = Es [r + v max Q*(s',d") | s, a]

» Value iteration algorithms solve the Bellman equation

Qi+1(s,a) = Ey [r + v max Q;(s’,a) | s, a]
a

» Represent value function by deep Q-network with weights w

Q(s,a,w) =~ Q™(s,a)

» Define objective function by mean-squared error in Q-values

- 2
Lw)=E || r++ max Q(s',a',w) — Q(s, a, w)
af
L ta;get A
» Leading to the following Q-learning gradient
oL dQ(s, a,
851/W) =E [(r + 7y max Q(s',a',w) — Q(s, a, w)) Q(;;, W)}

» Optimise objective end-to-end by SGD, using %iwﬂ

Stability Issues with Deep RL

"&J,i)"

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated

Deep Q-Networks

‘ﬁgi)"

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients

4)) Stable Deep RL (1): Experience Replay

J&Ji,)’.

To remove correlations, build data-set from agent’s own experience
» Take action a; according to e-greedy policy
» Store transition (s, at, re+1,St+1) in replay memory D
» Sample random mini-batch of transitions (s, a, r,s’) from D

» Optimise MSE between Q-network and Q-learning targets, e.g.

2
‘C(W) = Es o.r st~ |:(r . max Q(Sla 3’a W) - Q(Sa d, W))]

Stable Deep RL (2): Fixed Target Q-Network

"pJ,i)"

To avoid oscillations, fix parameters used in Q-learning target

» Compute Q-learning targets w.r.t. old, fixed parameters w™
r+~ max Q(s’,a’, w™)
al

» Optimise MSE between Q-network and Q-learning targets

E(W) = IE‘:s.,a,r,s’wD

2
(r +v max Q(s',a',w™) — Q(s, 3, W))]

» Periodically update fixed parameters w™ < w

Stable Deep RL (3): Reward/Value Range

J&Ji,)’.

» DQN clips the rewards to [—1, +1]
» This prevents Q-values from becoming too large
» Ensures gradients are well-conditioned

» Can't tell difference between small and large rewards

z ° ° ° °
.. Reinforcement Learning in Atari

e f "
p e o - ., action

DON in Atari

‘ﬁgi)"

» End-to-end learning of values Q(s, a) from pixels s
» Input state s is stack of raw pixels from last 4 frames
» Output is Q(s, a) for 18 joystick/button positions

» Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear
output layer
16 Bx8 filters
4xB4x84
p—
Stack of 4 previous) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games

)) Google Reinforcement Learning Architecture

Sync every
global N steps

Parameter Server Learner
DQN Loss
Shard K %

Gradient Ta rget Q
Network

Environment

e Q Network

» Parallel acting: generate new interactions

» Distributed replay memory: save interactions
» Parallel learning: compute gradients from replayed interactions

» Distributed neural network: update network from gradients

Recurrent Neural Network

Humans don’t start their thinking from scratch every second. As you read this essay, you understand
each word based on your understanding of previous words. You don’t throw everything away and start

thinking from scratch again. Your thoughts have persistence.

Traditional neural networks can’t do this, and it seems like a major shortcoming. For example, imagine
you want to classify what kind of event is happening at every point in a movie. It’s unclear how a

traditional neural network could use its reasoning about previous events in the film to inform later ones.

Recurrent neural networks address this issue. They are networks with loops in them, allowing

information to persist.

Recurrent Neural Networks have loops.

Recurrent Neural Networks

In the above diagram, a chunk of neural network, A, looks at some input ; and outputs a value h;. A

loop allows information to be passed from one step of the network to the next.

These loops make recurrent neural networks seem kind of mysterious. However, if you think a bit more,
it turns out that they aren’t all that different than a normal neural network. A recurrent neural network
can be thought of as multiple copies of the same network, each passing a message to a successor.

Consider what happens if we unroll the loop:

® ® ® ®

G - DOm0
&

An unrolled recurrent neural network.

The Problem of Long-Term Dependencies

One of the appeals of RNNs is the idea that they might be able to connect previous information to the

present task. such as using previous video frames might inform the understanding of the present frame.

Sometimes, we only need to look at recent information to perform the present task. For example,
consider a language model trying to predict the next word based on the previous ones. If we are trying to
predict the last word in “the clouds are in the sky.” we don’t need any further context — it's pretty
obvious the next word is going to be sky. In such cases, where the gap between the relevant information

and the place that it’s needed is small, RNNs can learn to use the past information.

° ® ¢ ®
i

A —»

5 &

®)
I
A
6

z

The Problem of Long-Term Dependencies

‘ﬁ]i)’.

But there are also cases where we need more context. Consider trying to predict the last word in the text
“I grew up in France... I speak fluent French.” Recent information suggests that the next word is

probably the name of a language, but if we want to narrow down which language, we need the context of

France, from further back. It’s entirely possible for the gap between the relevant information and the
point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to connect the information.

A A

A —»

® ® @ © ©
A

—» A ——m A —
r'y 7'y

1
®—{>-®

A
b O 6 6 © ¢

o

J,i)’.

LSTM Networks (Long Short Term Memory)

Long Short Term Memory networks — usually just called “LSTMs” — are a special kind of RNN, capable
of learning long-term dependencies.
LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information

for long periods of time is practically their default behavior, not something thetv struggle to learn!

All recurrent neural networks have the form of a chain of repeating modules of neural network. In

standard RNNs, this repeating module will have a very simple structure, such as a single tanh layer.

A A

>

l I
© ® &)

The repeating module in a standard RINN contains a single layer.

LSTM Networks (Long Short Term Memory)

‘ﬁgi)"

LSTMs also have this chain like structure, but the repeating module has a different structure. Instead of

having a single neural network layer, there are four, interacting in a very special way.

& @, ®
e T\ ~ A\ a T\
\I)_’ 4 ’\l /—’
&)) &)

The repeating module in an LSTM contains four interacting layers.

The Core Idea Behind LSTMs

The key to LSTMs is the cell state, the horizontal line running through the top of the diagram.

The cell state is kind of like a conveyor belt. It runs straight down the entire chain, with only some

minor linear interactions. It's very easy for information to just flow along it unchanged.

Ci_ Ct

e —® -

The LSTM does have the ability to remove or add information to the cell state, carefully regulated by

structures called gates.

7

The Core Idea Behind LSTMs

‘ﬁ]i)’.

Gates are a way to optionally let information through. They are composed out of a sigmoid neural net

layer and a pointwise multiplication operation.

—@—

The sigmoid layer outputs numbers between zero and one, describing how much of each component
should be let through. A value of zero means “let nothing through.” while a value of one means “let

everything through!”

An LSTM has three of these gates, to protect and control the cell state.

A

Step-by-Step LSTM Walk Through

The first step in our LSTM is to decide what information we're going to throw away from the cell state.
This decision is made by a sigmoid layer called the “forget gate layer.” It looks at h;_; and x;, and
outputs a number between 0 and 1 for each number in the cell state C¢—1. A 1 represents “completely

keep this” while a 0 represents “completely get rid of this.”

Let’s go back to our example of a language model trying to predict the next word based on all the
previous ones. In such a problem, the cell state might include the gender of the present subject, so that
the correct pronouns can be used. When we see a new subject, we want to forget the gender of the old

subject.

Jt =0 (Wy-[ht—1,2¢] + by)

o

]i)’.

4) Step-by-Step LSTM Walk Through

The next step is to decide what new information we're going to store in the cell state. This has two
parts. First, a sigmoid layer called the “input gate layer” decides which values we’ll update. Next, a tanh
layer creates a vector of new candidate values, Cy, that could be added to the state. In the next step,

we’ll combine these two to create an update to the state.

In the example of our language model, we'd want to add the gender of the new subject to the cell state,

to replace the old one we're forgetting.

it = 0 (Wi-[hi—1,2¢] + b;)
Cy = tanh(We-[hy—1,2¢] + be)

hg 1

o

J,i)’.

Step-by-Step LSTM Walk Through

It’s now time to update the old cell state, Cy_;, into the new cell state C. The previous steps already

decided what to do, we just need to actually do it.

We multiply the old state by f;, forgetting the things we decided to forget earlier. Then we add ; * ét.

This is the new candidate values, scaled by how much we decided to update each state value.

In the case of the language model, this is where we'd actually drop the information about the old

subject’s gender and add the new information, as we decided in the previous steps.

fi it > Ct — ft * Ct—l + 14 * ét

2016-7-1

Step-by-Step LSTM Walk Through

Finally, we need to decide what we're going to output. This output will be based on our cell state, but
will be a filtered version. First, we run a sigmoid layer which decides what parts of the cell state we're
going to output. Then, we put the cell state through tanh (to push the values to be between —1 and 1)

and multiply it by the output of the sigmoid gate, so that we only output the parts we decided to.

For the language model example, since it just saw a subject, it might want to output information
relevant to a verb, in case that’s what is coming next. For example, it might output whether the subject

is singular or plural, so that we know what form a verb should be conjugated into if that’s what follows

next.

’I:A
. ‘E;D or =0 (Wo [hi—1,2¢] + bo)
- L . hy = o * tanh (C})

by)

4) Step-by-Step LSTM Walk Through

