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: Building an object recognition system

IDEA: Use data to optimize features for the given task.
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: Building an object recognition system

CLASSIFIER

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficiently



@ Building an object recognition system

| END-TO-END
RECOGNITION
SYSTEM

- Everything becomes adaptive.
- No distiction between feature extractor and classifier.
- Big non-linear system trained from raw pixels to labels.



Building an object recognition system

END-TO-END
RECOGNITION
SYSTEM

Q: How can we build such a highly non-linear system?

A: By combining simple building blocks we can make more and more
complex systems.



4,)) Building a complicated function

4;*,}’.

Simple Functions

One Example of
Complicated Function

) s

- Function composition is at the core of
*Q—_ deep learning methods.
- Each "simple function” will have
parameters subject to training.




Implementing a complicated function

Complicated Function

log (cos (exp(sin’(x))))




2)) Intuition behind deep neural network




Intuition behind deep neural network

NOTE: Each black box can have trainable parameters.
Their composition makes a highly non-linear system.



Intuition behind deep neural network

Intermediate representations/features

NOTE: System produces a hierarchy of features.
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Key ideas of neural networks
IDEA # 1

Learn features from data

IDEA # 2

Use differentiable functions that produce
features efficiently

IDEA # 3

End-to-end learning:
no distinction between feature extractor and classifier

IDEA # 4

"Deep” architectures:
cascade of simpler non-linear modules




4) Key questions

- What is the input-output mapping?
- How are parameters trained?
- How computational expensive is it?

- How well does it work?



Contents

How to learn multi-layer generative models of unlabelled data by learning
one layer of features at a time.
— How to add Markov Random Fields in each hidden layer.
How to use generative models to make discriminative training methods
work much better for classification and regression.
— How to extend this approach to Gaussian Processes and how to
learn complex, domain-specific kernels for a Gaussian Process.
How to perform non-linear dimensionality reduction on very large
datasets
— How to learn binary, low-dimensional codes and how to use them for
very fast document retrieval.
How to learn multilayer generative models of high-dimensional sequential
data.
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A spectrum of machine learning tasks

Typical Statistics --

Low-dimensional data (e.g. less than
100 dimensions)

Lots of noise in the data

There is not much structure in the
data, and what structure there is, can
be represented by a fairly simple
model.

The main problem is distinguishing
true structure from noise.

Artificial Intelligence

High-dimensional data (e.g. more
than 100 dimensions)

The noise is not sufficient to obscure
the structure in the data if we
process it right.

There is a huge amount of structure
in the data, but the structure is too
complicated to be represented by a
simple model.

The main problem is figuring out a
way to represent the complicated
structure so that it can be learned.



) ') Historical background: First generation neural networks
2N ”y»ﬁ

* Perceptrons (~¥1960) used a Bomb Toy

layer of hand-coded features gug;fpgl’fal;glts
and tried to recognize objects Iébéls

by learning how to weight

these features. .
non-adaptive

0 There was a neat learning hand-coded
algorithm for adjusting the features
weights.

0 But perceptrons are input units
fundamentally limited in e.g. pixels

what they can learn to do. Sketch of a typical perceptron
from the 1960’s
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Second generation neural networks (~1985)

Back-propagate
error signal to
get derivatives
for learning

Compare outputs with
correct answer to get
error signal

4—4 outputs

hidden
layers

4—‘ input vector




A temporary digression
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* Vapnik and his co-workers developed a very clever type of perceptron called a
Support Vector Machine.
O Instead of hand-coding the layer of non-adaptive features, each training
example is used to create a new feature using a fixed recipe.
 The feature computes how similar a test example is to that training example.
O Then a clever optimization technique is used to select the best subset of
the features and to decide how to weight each feature when classifying a
test case.
* Butits just a perceptron and has all the same limitations.

* Inthe 1990’s, many researchers abandoned neural networks with multiple
adaptive hidden layers because Support Vector Machines worked better.



j_ What is wrong with back-propagation?

* It requires labeled training data.
 Almost all data is unlabeled.
* The learning time does not scale well

* |tisveryslow in networks with multiple hidden
layers.

* |t can get stuck in poor local optima.



;:_ Belief Networks
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A belief net is a directed acyclic graph
composed of stochastic variables.

We get to observe some of the
variables and we would like to solve
two problems:

The inference problem: Infer the
states of the unobserved variables.

The learning problem: Adjust the
interactions between variables to
make the network more likely to
generate the observed data.

stochastic
hidden
cause

visible
effect
We will use nets composed of layers of
stochastic binary variables with
weighted connections. Later, we will
generalize to other types of variable.




) Stochastic binary units (Bernoulli variables)
& LY
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e These have a state of 1 or (s; =
0. :

* The probability of turning
on is determined by the
weighted input from other b, + ZS
units (plus a bias)




) Learning Deep Belief Nets
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« |tis easy to generate an
unbiased example at the o
leaf nodes, so we can see hidden
what kinds of data the e=ian
network believes in.

 Itis hard to infer the
posterior distribution over
all possible configurations
of hidden causes.

« Itis hard to even get a
sample from the posterior.

« So how can we learn deep
belief nets that have
millions of parameters?

visible
effect



@ The learning rule for sigmoid belief nets

- | \5 \8 \.é)/
« Learning is easy if we can S
get an unbiased sample 1\ l /
from the posterior g
distribution over hidden Si
states given the observed /

data.

=p(s; =1)=

« For each unit, maximize 1+ exp(-— ZSJ Wji)
the log probability that its
binary state in t.he sample AWJ-,- = £ 5] (Si - pi)
from the posterior would be 2
generated by the sampled ,
learning

binary states of its parents. et
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) Restricted Boltzmann Machines
g 3,

« We restrict the connectivity to make
learning easier.

— Only one layer of hidden units.
+ We will deal with more layers later

— No connections between hidden units.

« |n an RBM, the hidden units are
conditionally independent given the
visible states.

— S0 we can quickly get an unbiased
sample from the posterior distribution
when given a data-vector.

— This is a big advantage over directed
belief nets

visible



) Learning feature hierarchy
g 3,
EEP’

. n m Higher layer: DBNs

(Combinations
of edges)

N
8

o &

First layer: RBMs
(edges)

. Input image patch
(pixels)

J



@ Restricted Boltzmann Machines with binary-valued input data
-o?],j/!ﬂ

* Representation
— Undirected bipartite graphical model
—v € {0,1}?: observed (visible) binary variables
—h € {0,1}%: hidden binary variables. hidden (H)

P(v,h) = £ exp(—E(v,h)) Q @ O
E(v,h) = = vWihj — Y bjh; — ) civ; b 6

¥ J i

= —v Wh-b'h—-c'v visible (V

S Y exp(—E(v,h)

ve{0,1}” he{0,1} ¥



The energy of a joint configuration

a&Ji,)’.

binary state of binary state of

visible unit i hidden unit |
/ i) \
Energy with configuration weight between
v on the visible units and units i and j

h on the hidden units

IE(v,h)

vh



Weights -> Energies -> Probabilities

« Each possible joint configuration of the visible
and hidden units has an energy

— The energy Is determined by the weights and
biases (as in a Hopfield net).

* The energy of a joint configuration of the visible
and hidden units determines its probability:

—E(v,h

* The probability of a configuration over the visible

units is found by summing the probabilities of all
the joint configurations that contain it.




@ Using energies to define probabilities

e—E(v,h)

« The probability of a joint p(v h) —
configuration over both visible Z e —E(u,g2)
and hidden units depends on
the energy of that joint partltlon
configuration compared with function
the energy of all other joint
configurations.

Z ,—E(v.h)
« The probability of a €

configuration of the visible (V)
units is the sum of the o

probabilities of all the joint
configurations that contain it. u,g




Energy based models with hidden units
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To increase power of EBMs, add hidden
variables.

E(x.h)

P(z) =Y P(z,h)=Y = v

By using the notation,

P f(.l‘) — l()gz e E(x.h)
(1

We can rewrite p(x) in a form similar to the
standard EBM,

F(x)
Mzl = : Z with Z = Ze Fl@),




Conditional probabilities

* Givenv, all the h; are conditionally

independent
L . exp(zi Wijv]'-l-bj) hidden (H)
P(hj B 1|V) - exp(Zi Wijvj+bj)+1
=sigmoid(}; W;; v; + b;)
=sigmoid(w;-rv +i)

— P(h|v) can be used as “features”

visible (V)

* Given h, all the v; are conditionally
independent

P(v;[h) = sigmoid(X; W;; h; + ¢;)



;j )) Tweakin’ parameters
TS

Now we need to adjust the model so it reflects
our data, do ML

e Likelihood fn
L(0) = I}, p(z; )

* Avg. Log-likelihood fn
100) = —loa(TTip(zi;0)) = — 3 log(p(z;:0))

e—F(;l?i)

= =3 log = 3 (- Fla) — log(2))

[/




) Tweakin’ parameters
AN
L34 %

 Take the derivative

00(0) 1 Z(—aF(a:,-)

dlog Z

00,

) = %Z(

—8F(:v,;)

00,

107

" Z a0,

)



; ) Tweakin’ parameters
iy

 Take the derivative
()  1<—~,~0F(zi)

dlog Z

00; —n< ( 0,

:—Z —(?F ZL‘I A

_ —Z —(9F :1;‘,

_ —Z —OF CCI

Can think of as ang
expectation over dataset.

xT

00 n
Z _F(i aF

Zp(i‘?)
OF (x)

+ B

90

) = EZ(—aF(%) N 10_2)

00; ' Z0,

6F(§:)

90,
}

N

This is an expectation
over all possible
configurations of input x.
Grows exponentially as
function of the length of
input.




Gradient revisited

dlogp(x) 0 e_F(I) J— F(x) 0JlogZ

06 00 Z 00 00
610927 Blah) — 9log 3, 30 e EEN
0o 5 8(9 "
1 —E(x.h) E(x, h
= — . c e
Zh. e—E(x,h) ; 06
1 —E(#.n)9E(& h)
* S e B ,Z;; ‘ 90
_Zp h|z) (9E —|—pr h—aEg; h)
z.h

The first term we can calculate directly from data and we
sample from p(v,h) using Gibbs Sampling. [ Remember
that x represents the observable variables, ie vin RBM ]



Recall energy function

(v, h) Z bijvi— Z thj_z Ui ;

J 0]
Calculating derlvatlves... _
Elv.} OFE(v,h
0 (U,z):vihj (_ ) 0,
ow; ; 0b;
) OE(v,h) .
dc; B
So, .
o0
A’wqj’j X 6(< ’U,Zjhj > =< ’U.ljhj > )



Inference

» Conditional Distribution: P(v|h) or P(h|v)
— Easy to compute (see previous slides).

— Due to conditional independence, we can sample all hidden
units given all visible units in parallel (and vice versa)

 Joint Distribution: P(v,h)

— Requires Gibbs Sampling (approximate; lots of iterations to
converge).

Initialize with v°
Sample h° from P(h|v?)

Repeat until convergence (t=1,...) {
Sample vt from P(vt|ht™)
Sample h from P(h|v})




Contrastive Divergence

* An approximation of the log-likelihood gradient for
RBMs

1. Replace the average over all possible inputs by samples

0 0 0
% log P(V) - ]Ehmpe(hlv) [_%E(ha V)] @v,h) [_%E(hla V)

2. Run the MCMC chain (Gibbs sampling) for only k steps
starting from the observed example

Initialize with v0 = v
Sample h° from P(h|v?)

Fort=1,....k{
Sample vt from P(vt|h~1)
Sample ht from P(h|v!)




A quick way to learn an RBM

O @ O O/(D O Start with a training vector on the

visible units.

=¥ h >/ =¥ h Update all the hidden units in
parallel

UO Update the all the visible units in

parallel to get a “reconstruction”.

t=0 L

data reconstruchon Update the hidden units again.
= 0 1

Aw,; = g (<v;h> —<vih;>)

This is not following the gradient of the log likelihood. But it works well. It is

approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005).



Markov Chain Monte Carlo

* Monte Carlo: sample from a distribution

- to estimate the distribution
- to compute max, mean

 Markov Chain Monte Carlo: sampling using
“local” information

- Generic “problem solving technique”
- decision/optimization/value problems
- generic, but not necessarily very efficient



Monte Carlo

SORTHW,

Nin = 7880, Nall = 10000, pi est = 3-152000 Nin = 39339, Nall = 50000, pi i 3.147120

09

0.8

0.7

0.6

> 05

04

03

02




Generate samples from distribution p(x). But not always samples can
be generated by formula.

P(x,y) is a 2-D distribution, which is difficult to represent, but p(x|y)
and p(y|x) is easy to calculated.



Markov chain and stationary distribution

ﬂ?],j)f.

P(Xi1=z| X, Xi—1,+ ) = P(Xps1=z| X})

State transiting probability just depend on previous state.



QO TECy

e
1,

A sample of Markov chain

BN RES RS —TEIFNMIF, HEFREBIEARELTFTRROM3%E: TRE(lower-class).
thbE(middle-class). ERE(upper-class), #f{i1f1,2,3 H3IREBI=THNE. HEFZRNALMWRE
— T ABBRNAMEORESHRZAZHREBIWAMNE. WR—TABNBANBF TEES. Aty
ZFET TEWABMIRZ 0.65, BTPEWALIBERRZ 0.28, BT LEWASIMIERZ 0.07, B
£, ARKFFR, WAMENTeVEBRRNT

T
State 1 2 3
1 065 028 0.07
AR 2 015 067 0.18
3 012 036 0.52




o)) A sample of Markov chain
a8 9,

4].‘)’.

ERMERENFT AN, MRSy

0.65 0.28 0.07
P= 1015 0.67 0.18

0.12 036 0.52

BRI —RALETE. 1B, LENANLFASMEAIFRE
mo = [mo(1),m0(2),m0(3)], IRLMMFLMDHTILHNER 71 = 7o P, i IAFMFR
HINTEEPHER mo = m P = mo P2, ..., BnRREHHE AN EEHHER

Tp = Tn1 P =mgP",



o)) A sample of Markov chain
& g

’J'i'y

BRigAIEEEE Ko = [0.21,0.68,0.11], MFHM AL AR ARNSIRIAT

FnfN TR & L&

0 0.210 0.680 0.110
0.252 0.554 0.194
0.270 0.512 0.218
0.278 0.497 0.225
0.282 0.490 0.226
0.285 0.489 0.225
0.286 0.489 0.225
0.286 0.489 0.225
0.289 0.488 0.225
0.286 0.489 0.225
0.286 0.489 0.225

-] & Ut = W N

-
o © @



o)) A sample of Markov chain
a8 9,

4]*)’.

BAOEINECATG, BOAHRRBESET, X MEERNG? FHAR— etz
Mme = [0.75,0.15,0.1] iAiRE, BEIHHHRANSRINT

gFaffAN TE $E LtE
0 0.75 0.15 0.1
0.522 0.347 0.132
0.407 0.426 0.167
0.349 0.459 0.192
0.318 0.475 0.207
0.303 0.482 0.215
0.295 0.485 0.220
0.291 0.487 0.222
0.2890 0.488 0.225
0.286 0.489 0.225
0.286 0.489 0.225

-] & O = W N =

-
- © o



o)) A sample of Markov chain
a8 9,
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FBMNEI, FFMRARNBHE, AR T . RNFHFNE, FWXLSEIRANIEERES
7, BERERWSIIIEES T © = [0.286,0.489,0.225), gt 2R IErnattE
D mo XX KRR MESIT A EERBMERBHEEPREN. BMTE—T P

PR _p2 _ ... .- plol0_ 0.286 0489 0.225

0.286 0489 0.225
0.286 0489 0.225

FEMNRI, Bn BBEANEHER, XP ERNSTE2RE IR E)
m = [0.286,0.489,0.225 X MEKN . BAN, X ESIRHIERHRMZDRHE
BN, MEEASHDEENRFTY, XTIRENRABRNTNTIRRNVEE.



A sample of Markov chain

SEREER. NR—MERMIRERTHBHEEEP, A ENEAR MESEEEN,
2 lim PR FEASER, iE lim P = = (j), #MA

m(1) m(2) ()
. w(l) =(2) 7(7)

1. nILrIgG P" = e
m(1) m(2) (J)

1. 71'(]) = ZW('Z)P,J
i=0
2. T AR TP =7 (E—JERR

H,
™= [7‘-(1)?77(2)3"'!W(j)v"']v Zﬂ'iz 1

TRADRENFRA .



A sample of Markov chain

METEERERS T mo R, FONEDRE LWIREER, L XMBEIH A, WE

Xo ~mo(z)
X ~mi(x), mi(z) = mi—1 () P = mo () P™

B 3 AR, S (o) Bl 31 R A (). BRI EnSHeHED K
Wk, MIAF

Xg ~ 7!'0(:13)
Xy ~mi(z)

Xp ~ mp(z) = m(z)
Xny1 ~ m(x)
Xnya ~ "T(m)

FREh X, X1, Xnsa, - -~ () BRRANHRFENEE, BRMOFFHL. IRFHK
TIN—DBIFRMEIRTE xo T8I ED R RERE RS, B 2HNEFE—1
HBFI 2o, 1,20, Ty Tpyt * * -, BT IERBEOUEITH, 20, Tnp, - ERERFR
oin m(x) BPER,



g

Markov chain Monte Carlo

o)
N Y

4;*,}’.

M FEENRENp(x) BNHEEREAEENALEREENER. A TR
FFRAM, TE—IMMRNFERIEER: INRFRNEMRE— MEBHEENPRDRHE, &
TFZ SRR A= (), B 2FNVNEM — DRI S HE BB D KT,

BFE—1EBFT 2o, 21, T, " Ty Tpgr * * 7y, MFRDRBFBEFISE2EWHT, T2

BNRET 7(x) R TL, Tnyt = %

X AEBIPAIIEIRTE 19534 Metropolis*BE| T, AN THTH FRANTRMER.,

Metropolis F[E T PIRFHE NNFEFESIHRFRFER, BXEETETIRENTS
+BA1E, BMetropolisHi%, HAREMNITEN LEEXI. Metropolis HEiHEE M EE
NEFETE, HFRE T —&F MCMCHE, FTUATMHEEPU MRS YR S.
MetropolisfIIX R RE KFITFEFHERERE) B, MetropolisBiEHAESEE AT
THENTIREENFEEL —.



o)) Markov chain Monte Carlo
a8 B,

4]*)’.

FH. [ARTFREN] NEIEASDRENEBEREPRMAN ST (z) HE
m(2) Py = w(7) Py forall 2,j (1)

N (x) BSEENTERS R, LA FERE M (detailed balance condition).

EERXANTEREMBAN, FENBIFRFFODERS RN T EAF MRS, 5, W 2
HRHER) MEXOBRERE, BHSWN ) HEO0 WBERERLER, PRS2 L
RREER & (2) RIBER, Aim(z) RDRBAFRIT. BF LOISARRESR, bl
BRI

AFr 248 P = nf0RR, Frbn2FRnH.



Markov chain Monte Carlo

BIRRMNBEE — M HBEE QBRI 7) BTWRTE HB RS MME, Rark)
BHq(g)?) FFq(z — 7)), BL, EFERT

p(2)q(2, 5) # p(7)a(7,7)

Wt RIS AR, BT p(o) PATRR D RBATFRAH. HOTEHD
M — o, ERACFRFFRIET B, ENFIAN—1al, ), BNFHE

p()q(z, 5)e, j) = p(7)a(s, D)(s,2)  (¥) (2)

B 480 o7, ) LS RRERRZIE T BERAY, TR, O

a(?,j) = p(3)e(5,7) . al4,?) = p(2)q(z, 5)

FTREAFEZT . PIUE
p(2)q(2, ))alz, 7) = p(7)a(s,2)a(g,2)  (xx) (3)
Nttt N, pittiitce’
Q'(i,4) Q'(3,4)



o)) Markov chain Monte Carlo
“ﬂ:/ ‘-9,.

Z z 'i P/
FRENEERAAEBEREQN— MREBMN DK, ME N T ATEBEREQ NI
B, T QIMTHERETEREN, mtIEEQ NTR MitEp(c)

s Q MERHFIA oX, ))ENERE, MBS TLERNERRODIEEL, A
RS 2 Uhg(?, 5) ROBERERAEIRS ) BHR, Mol )RR #E, TE%F
ST D RHEQ MHBME g (2, )al?, 5).

q(i. J,) q(i.j)
l—a(i.j) a(i.J)
4§l % 2
_t | ] >
0 t t+1

SCEFEMESRE



Markov chain Monte Carlo

BRIERNET — M HBEEQRTRTTE Ne(2, 7)), LA LA R EIE—TF, EMNFMBIT
T B RTRERES () R .

Algorithm 5 MCMC FEHEHIL
1 WIS REVISIREX, = 2o
2: Xt =0,1,2,---, LT EERETREF

o FNMMNZLGRKERENX, =2, By ~ q(z|2¢)
o N5 n#HFHu ~ Uniform|0,1]

o My < alzey) =ply)g(zsly) WEREBz, -y, X =y

o BNAEZED, WX =2,




o)) Markov chain Monte Carlo
B g

2L
DA LR MCMC RFRIEDAERRFRNIMET . FFERT— M POEE. SREQEHE
R IR E oz, J) TRER/D, EHERIETRETIRBEIRUMR:E, BEAEN
#, XEGIREEAAAORSTAEERE AR, EFIFRIHp(c) NEEA
8. BIRAMERA —BETFR?

ik oz, j) = 0.1,(5,2) = 0.2, EBHHRBEFRHEME, TR

p(#)q(z, j) x 0.1 = p(5)q(s,2) x 0.2

EAFLT AsE, BOXER
p(?)q(2,7) x 0.5 = p(5)q(s,2) x 1
F, BIESTETE, MATEFRFHHRAITHE XRREENTUILEEFRFHFC)

AFB(Z, 5), g, 2) BILPIREK, ERFHETHEAN—IRAT L, IHRMNRRSTR
HRRBFETE. PRUAFRMIAT LR



Markov chain Monte Carlo

T2, St bAMCMC RERERESTENNPEE, BNFEFATINTHRBRRS
LAY Metropolis-Hastings Bi%.

Algorithm 6 Metropolis-Hastings F 8%
1: IS REVIERREX, = 2o
2: Xt =0,1,2,---, MEFLUFIEH#TRHAE

o FNMMNZBREREFAX,: = 2. KiFy ~ q(z|z)
o W5 #F M u ~ Uniform|0, 1]

o MBu < alzy) = min{%.l} W) 8% Z % Bz, - y
X =y

o BUAEREE, WX, =1,




Gibbs Sampling

4]{)’.

MTEENER, B TESE FE@ET o < 1), BLE Metropolis-Hastings B{ERHE
FEE. BETHI— I EREROERETE o = 1B HNGEE ZHNER, BIsE
—MREN p(z,y), BFcLIMERINFE NS Az, v1), By, v2), FNER

p(z1,y1)p(ya|1) = ple1)p(ys|z1) p(ya |21)

p(z1,y2)p(y1|x1) = p(z1)p(ya|z1)p(y1|T1)
FREAFE

p(1,y1)p(yalz1) = pler, y2)p(ys|er)  (x x %) (4)
Bp
p(A)p(ya|z1) = p(B)p(y1|z1) X

EFULER, ROER, £ — o REFHT vHOEL L, NBEHEENH _ e
p(ylzy ) B ERTRA S 2 FRSBEER, 54 EMFA A2 S SER R AR TR, THELSRRDSrvaR
BEHER, MRERMNEy =y, IFELZLEEFFHIS Az, y1), Cl2e,y,) BEWNTH
#

p(A)p(z2|y1) = p(C)p(1]yy)-



Gibbs Sampling

4] ,i 3
FREMNTLNT fEF I EEER KL ENFEBRIEREREQ

Q(A— B) =pl(yglzy) MR zq=zp=m1

Q(A — C) = p(zclyy) MR ya=yc=un1
QA—-D)=0 HE

BTN EROBBERE Q MBSV FE LEEHS X, Y, REARTREMT
PX)QX = Y) =p(Y)QY — X)

FREAZHTIE LMD RERISEEITRA ple,y). MXAEERIN Gibbs
Sampling ¥i%,7 Stuart Geman $N1Donald Geman X/ M35 T 19844F 12 HRAY, ZETLAAY
#Gibbs Sampling 2F Wi 1375 T Gibbs random field, X AMEIEZEILR MAHHF T H & 18
EENE.

Algorithm 7 —4Gibbs Sampling %
1: BRI X = z0Yo = w0
2 At =0,1,2,--- MR

L yes1 ~ plylze)

2. Tl "‘P(T yf—l)

“HGibbs Sampling BN S CEEE



) Gibbs Sampling
a2 £

aﬁji,}.

B\ LRI AR Sl B0, WTF ()R, By BHEUEHX,, T
FHBESHRTE, AR TR R RN

P(X1,91)p(y2(x1) = p(X1,y2)P(y1X1) (5)

WeBTEETEFERE Q BEMHFNT py[x1) BX. LRXRRIEBAT —RLIRMAIER, I T4EE
TR, RESEALM IR LIAMERTLLIMEL. FTURETE R FHES
p(mls [ P IL‘") EﬂflﬁﬂTﬁ:’)‘(ﬁﬁiﬁW

1. IR LIRS (21, 22, - -y 2n), DERESBAES, REHEELIRMEER. 5
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A quick way to learn an RBM

O @ O O/(D O Start with a training vector on the

visible units.

=¥ h >/ =¥ h Update all the hidden units in
parallel

UO Update the all the visible units in

parallel to get a “reconstruction”.

t=0 L

data reconstruchon Update the hidden units again.
= 0 1

Aw,; = g (<v;h> —<vih;>)

This is not following the gradient of the log likelihood. But it works well. It is

approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005).



How to learn a set of features that are good for reconstructing
images of the digit 2

50 binary 90 binary
feature feature
neurons neurons
Increment weights Decrement weights
between an active between an active
pixel and an active pixel and an active
feature feature
16 x 16 16 x 16
pixel pixel
image image
data reconstruction

(reality) (better than reality)



The final 50 x 256 weights

L3
= i
r | B -

Each neuron grabs a different feature.




How well can we reconstruct the digit images from the binary
feature activations?

Reconstruction Reconstruction
from activated from activated
Data binary features Data binary features

[ ey

New test images from Images from an

the digit class that the unfamiliar digit class
model was trained on (the network tries to see

every image as a 2)



Three ways to combine probability density models

Mixture: Take a weighted average of the distributions.

— It can never be sharper than the individual distributions.
It's a very weak way to combine models.

Product: Multiply the distributions at each point and then
renormalize.

— Exponentially more powerful than a mixture. The
normalization makes maximum likelihood learning
difficult, but approximations allow us to learn anyway.

Composition: Use the values of the latent variables of one
model as the data for the next model.

— Works well for learning multiple layers of representation,
but only if the individual models are undirected.



l Training a deep network
.e&],iz)ﬂ

« First train a layer of features that receive input directly
from the pixels.

« Then treat the activations of the trained features as if
they were pixels and learn features of features in a
second hidden layer.

|t can be proved that each time we add another layer of
features we improve a variational lower bound on the log
probability of the training data.

— The proof is slightly complicated.

— But it is based on a neat equivalence between an
RBM and a deep directed model (described later)




@‘ l The generative model after learning 3 layers

‘égiz)"

To generate data:

1.

Get an equilibrium sample
from the top-level RBM by
performing alternating Gibbs
sampling for a long time.

Perform a top-down pass to
get states for all the other
layers.

So the lower level bottom-up
connections are not part of
the generative model. They
are just used for inference.




Deep Belief Networks (DBNs)

* Probabilistic generative model
* Deep architecture — multiple layers

* Unsupervised pre-learning provides a good
initialization of the network

— maximizing the lower-bound of the log-likelihood
of the data

e Supervised fine-tuning
— Generative: Up-down algorithm

— Discriminative: backpropagation



@ DBN structure

Hidden /

layers T

\ ' ‘ ; Directed
h" pelief nets

P(v,h' . h*,.. h")=P(v|h")P(h' |h*)..P(h |h"™)P(h'™,h)



@‘i l DBN structure

(approximate) inference

Generative
O(h’ |h*)=P(h’ |h%) W3 P(h?,h?)  process
A 4

P(v|h")

P(v,h'.h*,.. h")=P(v|h")P(h' |h*)..P(h" |W )P, n)
Oh' |h™) =] [sigm(®’ ' + Wh'™") P(h™ |h') =] [ sigm(b’ + W' 'h')
J J



DBN greedy training

* First step:

— Construct an RBM with

an input layer vand a
hidden layer h

— Train the RBM




DBN greedy training

* Second step:

— Stack another hidden
layer on top of the RBM
to form a new RBM

— Fix W', sampleh’ from
O(h' |v) as input. Train
W?* as RBM.




DBN greedy training
* Third step:

— Continue to stack layers|
on top of the network,
train it as previous step)

with sample sampled
from O(h* [h')

* And so on...




Why greedy training work

* RBM specifies P(v,h) from
P(v|h) and P(h|v) h?
— Implicitly defines P(v) and
P(h) wi'
* Key idea of stacking
— Keep P(v|h) from 1st RBM

— Replace P(h) by the
distribution generated by
2nd level RBM

wi




Why greedy training work

‘égiz)"

* Greey Training:

— Variational lower-bound justifies
greedy layerwise training of
RBMs

— Note: RBM and 2-layer DBN are

equivalent when W? = (W1H)T
Therefore, the lower bound is
tight and the log-likelihood
improves by greedy training.

log P(x) > Homix) + »  Q(h[x) (log P(h) + log P(x|h))
b Trained by the second layer RBM



DBN and supervised fine-tuning

* Discriminative fine-tuning
— Initializing with neural nets + backpropagation

— Maximizes log P(Y | X) (X:data Y:label)

* Generative fine-tuning
— Up-down algorithm

— Maximizes log P(Y,X) (jointlikelihood of data and labels)



Multi-modal Learning

Low-level descriptors Middle-level features Multimodal featutre fusion
Shape r A 1 r ~ 2} r - \
database Py m—yS
— Shape descriptors High-level feature
1, Ol 10| |O for shape-based
= Ol |0] |O modality
=g 0| |9| |©
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Multi-modal Feature Fusion for 3D Shape Recognition and Retrieval
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Table 2. Retrieval performance of the proposed method using standard
measures on SHREC 2007.*

Method NN (%) FT(%) ST(%) E(%) DCG (%)
Only geometry-based 83.75 66.81 39.92 56.34 89.91
modality features

Only view-based 95.00 72.10 42.79 60.17 93.41
modality features
Proposed method 97.50 83.29 46.28 66.54 96.73

*Nearest neighbor (NN), first tier (FT), second tier (ST), E-measure (E), and
discounted cumulative gain (DCG).

Multi-modal Feature Fusion for 3D Shape Recognition and Retrieval



A model for digit recognition

A?],j,h

The top two layers form an

|

500 neurons

associative memory whose 2000 top-level neurons
energy landscape models the low
dimensional manifolds of the I
digits.
10 label
The energy valleys have names wmp
neurons

The model learns to generate
combinations of labels and images.

To perform recognition we start with a
neutral state of the label units and do
an up-pass from the image followed
by a few iterations of the top-level
associative memory.

11

500 neurons

11

28 x 28
pixel
Image




=.- Result for supervised fine-tuning

* Very carefully trained backprop net with  1.6%
one or two hidden layers (Platt; Hinton)

* SVM (Decoste & Schoelkopf, 2002) 1.4%

* Generative model of joint density of 1.25%
images and labels (+ generative fine-tuning)

* Generative model of unlabelled digits 1.15%

followed by gentle backpropagation
(Hinton & Salakhutdinov, Science 2006)




