

Intelligent Image and Graphics Processing 智能图像图形处理

3D Reconstruction

- Recover the 3D world
- Inverse problem

Structure from Motion (Batch processing)

Visual SLAM (Real-time Processing)

Win3D MapWidget SvarWidget

1340,T:2016-01-18 07:51:49.96000000 U(+08)-245,Sub:294/200/282,FOV:0.00152948 Map:P:442,F:3,R:0,W:0

- Input
 - Images
 - Intrinsics
- Output
 - 3D model and camera poses
- Optional
 - Some cases of unknown intrinsics are also discussed

Two View Reconstruction

Keypoints Detection

Descriptor of Each Point

Match Points

- Need fast nearest neighbor searching
 - Curse of Dimensionality
 - Flann <u>http://www.cs.ubc.ca/research/flann/</u>
- Ratio test for robustness
 - The nearest neighbor should be much better than the other candidates
- Consistency check
 - Whether the correspondences have consistent structure and motion
 - Make use of two-view relation

What is the relation between the correspondences?

Relation between pixels and rays in space Pinhole Perspective Projection

Pinhole Camera Model

linear projection in homogeneous coordinates!

Pinhole Camera Model

Pinhole Camera Model

x = PX

 $\mathbf{P} = \operatorname{diag}(f, f, 1) \left[\mathbf{I} \mid \mathbf{0} \right]$

Principal Point Offset

$$x = K \begin{bmatrix} I \mid 0 \end{bmatrix} X_{cam}$$

$$K = \begin{bmatrix} f & p_x \\ f & p_y \\ & 1 \end{bmatrix}$$

calibration matrix

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \mathbf{X}_{ob}$$
$$= \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}_{obj}$$

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R}'^{\top} & -\mathbf{R}'^{\top} \mathbf{t}' \end{bmatrix} \mathbf{X}_{\text{obj}}$$

Real Camera

$$K = \begin{bmatrix} \alpha_x & p_x \\ \alpha_y & p_y \\ & 1 \end{bmatrix}$$

General Projective Camera

$$K = \begin{bmatrix} \alpha_x & s & p_x \\ & \alpha_x & p_y \\ & & 1 \end{bmatrix}$$

P = KR[I | t] 11 dof (5+3+3)

P = K[R | t]intrinsic camera parameters extrinsic camera parameters

Radial Distortion

- Due to spherical lenses (cheap)
- Model:

Radial Distortion Example

Homography

The vector product $\mathbf{v} \times \mathbf{x}$ can be represented as a matrix multiplication

$$\mathbf{v} \times \mathbf{x} = \begin{bmatrix} \mathbf{v} \end{bmatrix}_{\!\!\times} \mathbf{x}$$

where

$$\begin{bmatrix} v \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{bmatrix}$$

- [v] × is a 3 × 3 skew-symmetric matrix of rank 2.
- v is the null-vector of [v]×, since v × v =
 [v]×v = 0.

Choose the world coordinate system such that the plane of the points has zero Z coordinate. Then the 3×4 matrix P reduces to

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{14} \\ p_{21} & p_{21} & p_{24} \\ p_{31} & p_{32} & p_{34} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{1} \end{pmatrix}$$

which is a 3×3 matrix representing a general plane to plane projective transformation.

Homography – Plane Projective Transformations

or $\mathbf{x} = H\mathbf{x}$, where H is a 3 \times 3 non-singular homogeneous matrix.

- This is the most general transformation between the world and image plane under imaging by a perspective camera.
- It is often only the 3 × 3 form of the matrix that is important in establishing properties of this transformation.
- A projective transformation is also called a "homography" and a "collineation".
- H has 8 degrees of freedom.

$$\mathbf{x}' = \mathbf{H}_{\pi}\mathbf{x}$$

Homography

- 8 degree of freedom
- Can represent camera rotation
 - Make panorama images

Homography

- 8 degree of freedom
- Can represent camera rotation
 - Make panorama images

Limitation: Only homography can not handle translation!

Epipolar Geometry

Fundamental Matrix

Features of Fundamental Matrix

 Depends only on the relative pose and internal parameters

 $F = K_2^{-T} [t]_{\times} R K_1^{-1}$

- F is a 3 × 3 rank 2 homogeneous matrix
- Fe = 0
- It has 7 degrees of freedom
- Compute from 7 image point correspondences

Fundamental Matrix - Eight-point Algorithm

- Given a correspondence $\mathbf{x}\leftrightarrow\mathbf{x}'$
- Assume

$$\mathbf{x}' = \begin{bmatrix} x'\\y'\\1 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x\\y\\1 \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13}\\f_{21} & f_{22} & f_{23}\\f_{31} & f_{32} & f_{33} \end{bmatrix}$$
$$\mathbf{f} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \end{bmatrix} \quad f_{21} \quad f_{22} \quad f_{23} \quad f_{31} \quad f_{32} \quad f_{33} \end{bmatrix}^{\mathsf{T}}$$

• We can get

$$\mathbf{x'}^{T} \mathbf{F} \mathbf{x} = 0$$

$$\mathbf{\nabla}$$

$$[x'x \quad x'y \quad x' \quad y'x \quad y'y \quad y' \quad x \quad y \quad 1] \mathbf{f} = 0$$

Fundamental Matrix - Eight-point Algorithm

• Given 8 correspondences

2	$x_1'x_1$	$x'_1 y_1 \\ x'_2 y_2$	x'_1	$y_1'x_1$ $y_1'x_2$	$y'_1 y_1 y_1 y_2 y_3 y_3 y_4 y_5 y_5 y_5 y_5 y_5 y_5 y_5 y_5 y_5 y_5$	y'_1	x_1	y_1	1			
2	$x'_{3}x_{3}$	$x_{2}^{2}y_{2}^{2}$ $x_{3}^{\prime}y_{3}$	$x_{2}' \\ x_{3}'$	$y_{3}^{2}x_{3}$	$y_{3}^{\prime}y_{3}$	y'_{3}	$x_2 \\ x_3$	$\frac{g_2}{y_3}$	1		\Box	
а 2	$x'_4 x_4 \\ x'_5 x_5$	$\begin{array}{c} x_4' y_4 \\ x_5' y_5 \end{array}$	$\begin{array}{c} x'_4 \\ x'_5 \end{array}$	$\frac{y_4'x_4}{y_5'x_5}$	y'_4y_4 y'_5y_5	$egin{array}{c} y'_4 \ y'_5 \end{array}$	$\begin{array}{c} x_4 \\ x_5 \end{array}$	$\frac{y_4}{y_5}$	1 1	$\mathbf{f} = 0$		$\mathbf{Af} = 0$
а 2	$x_6' x_6$ $x_7' x_7$	$x'_{6}y_{6} \\ x'_{7}y_{7}$	$\begin{array}{c} x_6' \\ x_7' \end{array}$	$y_6' x_6$ $y_7' x_7$	$y'_{6}y_{6}\\y'_{7}y_{7}$	$\frac{y_6'}{y_7'}$	$\frac{x_6}{x_7}$	$rac{y_6}{y_7}$	1 1			
а	$x'_8 x_8$	$x'_{8}y_{8}$	x'_8	$y'_{8}x_{8}$	$y'_{8}y_{8}$	y'_8	x_8	y_8	1			

- Nontrivial solution
 - + ${\bf f}$ is in null space of A

Any m x n real matrix

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$$

U left-signular vectors
 Σ diagonal values are singular values
 V right-signular vectors

Properties

 $\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I} \quad \mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{I}$

- Σ 1. Uniquely determined by A
 - 2. Entries are nonnegative

• In presence of multiple correspondences

$$\label{eq:stable} \begin{split} \min \|\mathbf{A}\mathbf{f}\| & \text{subject to} \quad \|\mathbf{f}\| = 1 & \text{SVD!} \\ \text{The solution is the singular vector of } \mathbf{A} \text{ corresponding} \\ \text{to the least singular value} \end{split}$$

Rank constraint

 $\mathbf{F} \to \mathbf{F'} \quad \det \mathbf{F'} = 0$

• Minimize Frobenius norm

$$\min_{\mathbf{F}'} \|\mathbf{F} - \mathbf{F}'\|_{\mathsf{F}} \text{ subject to } \det \mathbf{F}' = 0 \qquad \text{SVD!}$$

 $\mathbf{F} = \mathbf{U}\operatorname{diag}(\sigma_1, \sigma_2, \sigma_3)\mathbf{V}^{\mathsf{T}} \sqsubset \mathbf{F}' = \mathbf{U}\operatorname{diag}(\sigma_1, \sigma_2, 0)\mathbf{V}^{\mathsf{T}}$

Fundamental Matrix – RANSAC Estimation

- For many times
 - Pick 8 points
 - ullet Compute a solution for ${f F}$ using these 8 points
 - Count number of inliers that with geometric error close to 0
- Pick the one with the largest number of inliers
- Only the inliers are kept as correspondences

Two View Reconstruction

Essential Matrix

• A relation of camera coordinates

$$\mathbf{x}_{\mathsf{cam}} = \mathbf{K}^{-1}\mathbf{x} \quad \mathbf{x}'_{\mathsf{cam}} = |\mathbf{K}'^{-1}\mathbf{x}' \quad \Box > \quad \tilde{\mathbf{x}}'^{\mathsf{T}}\mathbf{E}\mathbf{x}' = 0$$

Related to fundamental matrix

 $\mathbf{E} = \mathbf{K}'^\mathsf{T} \mathbf{F} \mathbf{K}$

Can get from camera extrinsics

$$\mathbf{E} = [\mathbf{t}]_{ imes} \mathbf{R}$$

- Properties
 - 1) det $\mathbf{E} = 0$
 - 2) Two identical nonzero singular values
 - 3) Five degree of freedom

Essential Matrix

Result 9.19. For a given essential matrix $\mathbf{E} = \mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^T$, and the first camera matrix $\mathbf{P}_1 = [\mathbf{I}|\mathbf{0}]$, there are four possible choices for the second camera matrix \mathbf{P}_2 :

$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}\mathbf{V}^{T} \ | + \mathbf{u}_{3} \end{bmatrix}$$
$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}\mathbf{V}^{T} \ | - \mathbf{u}_{3} \end{bmatrix}$$
$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}^{T}\mathbf{V}^{T} \ | + \mathbf{u}_{3} \end{bmatrix}$$
$$\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}^{T}\mathbf{V}^{T} \ | - \mathbf{u}_{3} \end{bmatrix}$$

Essential Matrix – Four Possible Solution

Two View Reconstruction

Triangulation

Triangulation

- Mid-point algorithm [Hartley and Sturm 1997]
 - + Easy to implement
 - + Easy to generalize to multiple views
 - Not "optimal"
- Optimal method
 - + Minimize reprojection error
 - Not big improvement in practice
 - Hard to generalize to multiple views

Mid-point Algorithm

View Direction

- Given camera extrinsic \mathbf{R}, \mathbf{t}

• Camera center

$$\mathbf{x}_{\mathsf{cam}} = \mathbf{0} \implies \mathbf{c} = \mathbf{x}_{\mathsf{world}} = \mathbf{R}^{\mathsf{T}}\mathbf{0} - \mathbf{R}^{\mathsf{T}}\mathbf{t} = -\mathbf{R}^{\mathsf{T}}\mathbf{t}$$

View direction

$$\begin{bmatrix} 0\\0\\1 \end{bmatrix} - \mathbf{0} \implies \left(\mathbf{R}^{\mathsf{T}} \begin{bmatrix} 0\\0\\1 \end{bmatrix} - \mathbf{R}^{\mathsf{T}} \mathbf{t} \right) - \mathbf{c} = \mathbf{R}(3,:)^{\mathsf{T}}$$

Front of the Camera

- A point: \mathbf{X}_{world}
- Direction: $\mathbf{x}_{\mathsf{world}} \mathbf{c}$
- Angle: $\mathbf{a}^{\mathsf{T}}\mathbf{b} = \|\mathbf{a}\|\|\mathbf{b}\|\cos\theta$
- What to test?

$$(\mathbf{x}_{world} - \mathbf{c})^{\mathsf{T}} \mathbf{R}(3, :) > 0$$

Field of view

Pick the Solution

- With maximal number of points in front of both cameras.
- "Cheiralilty Constraints"

Two View Reconstruction

Point 1
 Point 2
 Point 3

 Image 1

$$\mathbf{x}_1^1 = \mathbf{K} \begin{bmatrix} \mathbf{R}_1 | \mathbf{t}_1 \end{bmatrix} \mathbf{X}^1$$
 $\mathbf{x}_1^2 = \mathbf{K} \begin{bmatrix} \mathbf{R}_1 | \mathbf{t}_1 \end{bmatrix} \mathbf{X}^2$

 Image 2
 $\mathbf{x}_2^1 = \mathbf{K} \begin{bmatrix} \mathbf{R}_2 | \mathbf{t}_2 \end{bmatrix} \mathbf{X}^1$
 $\mathbf{x}_2^2 = \mathbf{K} \begin{bmatrix} \mathbf{R}_2 | \mathbf{t}_2 \end{bmatrix} \mathbf{X}^2$
 $\mathbf{x}_2^3 = \mathbf{K} \begin{bmatrix} \mathbf{R}_2 | \mathbf{t}_2 \end{bmatrix} \mathbf{X}^3$

 Image 3
 $\mathbf{x}_3^1 = \mathbf{K} \begin{bmatrix} \mathbf{R}_3 | \mathbf{t}_3 \end{bmatrix} \mathbf{X}^1$
 $\mathbf{x}_3^3 = \mathbf{K} \begin{bmatrix} \mathbf{R}_3 | \mathbf{t}_3 \end{bmatrix} \mathbf{X}^3$

Point 1
 Point 2
 Point 3

 Image 1

$$\mathbf{x}_1^1 = \mathbf{K} \begin{bmatrix} \mathbf{R}_1 | \mathbf{t}_1 \end{bmatrix} \mathbf{X}^1$$
 $\mathbf{x}_1^2 = \mathbf{K} \begin{bmatrix} \mathbf{R}_1 | \mathbf{t}_1 \end{bmatrix} \mathbf{X}^2$

 Image 2
 $\mathbf{x}_2^1 = \mathbf{K} \begin{bmatrix} \mathbf{R}_2 | \mathbf{t}_2 \end{bmatrix} \mathbf{X}^1$
 $\mathbf{x}_2^2 = \mathbf{K} \begin{bmatrix} \mathbf{R}_2 | \mathbf{t}_2 \end{bmatrix} \mathbf{X}^2$
 $\mathbf{x}_2^3 = \mathbf{K} \begin{bmatrix} \mathbf{R}_2 | \mathbf{t}_2 \end{bmatrix} \mathbf{X}^3$

 Image 3
 $\mathbf{x}_3^1 = \mathbf{K} \begin{bmatrix} \mathbf{R}_3 | \mathbf{t}_3 \end{bmatrix} \mathbf{X}^1$
 $\mathbf{x}_3^3 = \mathbf{K} \begin{bmatrix} \mathbf{R}_3 | \mathbf{t}_3 \end{bmatrix} \mathbf{X}^3$

Input: Observed 2D image position

 $\begin{array}{cccc} \tilde{\textbf{X}}_2^1 & \tilde{\textbf{X}}_2^2 & \tilde{\textbf{X}}_2^3 \\ \bullet & \text{Output:} & \tilde{\textbf{X}}_3^1 & \tilde{\textbf{X}}_3^3 \\ & \text{Unknown Camera Parameters (with some guess)} \end{array}$

 $\tilde{\mathbf{X}}_{1}^{1}$ $\tilde{\mathbf{X}}_{1}^{2}$

$$[\mathbf{R}_1 | \mathbf{t}_1], [\mathbf{R}_2 | \mathbf{t}_2], [\mathbf{R}_3 | \mathbf{t}_3]$$

Unknown Point 3D coordinate (with some guess)

$$\mathbf{X}^1, \mathbf{X}^2, \mathbf{X}^3, \cdots$$

A valid solution $[\mathbf{R}_1|\mathbf{t}_1], [\mathbf{R}_2|\mathbf{t}_2], [\mathbf{R}_3|\mathbf{t}_3]$ and $\mathbf{X}^1, \mathbf{X}^2, \mathbf{X}^3, \cdots$ must let

Re-projection
$$\begin{cases} \mathbf{x}_{1}^{1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{1} | \mathbf{t}_{1} \end{bmatrix} \mathbf{X}^{1} & \mathbf{x}_{1}^{2} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{1} | \mathbf{t}_{1} \end{bmatrix} \mathbf{X}^{2} \\ \mathbf{x}_{2}^{1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{2} | \mathbf{t}_{2} \end{bmatrix} \mathbf{X}^{1} & \mathbf{x}_{2}^{2} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{2} | \mathbf{t}_{2} \end{bmatrix} \mathbf{X}^{2} & \mathbf{x}_{2}^{3} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{2} | \mathbf{t}_{2} \end{bmatrix} \mathbf{X}^{3} \\ \mathbf{x}_{3}^{1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{3} | \mathbf{t}_{3} \end{bmatrix} \mathbf{X}^{1} & \mathbf{x}_{3}^{3} = \mathbf{K} \begin{bmatrix} \mathbf{R}_{3} | \mathbf{t}_{3} \end{bmatrix} \mathbf{X}^{3} \end{cases}$$

Observation
$$\begin{bmatrix} \tilde{\mathbf{X}}_1^1 & \tilde{\mathbf{X}}_1^2 \\ \tilde{\mathbf{X}}_2^1 & \tilde{\mathbf{X}}_2^2 & \tilde{\mathbf{X}}_2^3 \\ \tilde{\mathbf{X}}_3^1 & \tilde{\mathbf{X}}_3^3 \end{bmatrix}$$

A valid solution $[\mathbf{R}_1 | \mathbf{t}_1], [\mathbf{R}_2 | \mathbf{t}_2], [\mathbf{R}_3 | \mathbf{t}_3]$ and $\mathbf{X}^1, \mathbf{X}^2, \mathbf{X}^3, \cdots$ must let the Re-projection close to the Observation, i.e. to minimize the reprojection error

$\min \sum_{i} \sum_{j} \left(\tilde{\mathbf{x}}_{i}^{j} - \mathbf{K} \left[\mathbf{R}_{i} | \mathbf{t}_{i} \right] \mathbf{X}^{j} \right)^{2}$

Refine a visual reconstruction to produce **jointly optimal** 3D structure and viewing parameter (camera pose and/or calibration) estimates [Triggs 00]

Which Two Views?

Select First Two View

- Select two views that can be reliably reconstructed
- When? How?

Pipeline

Demo

http://www.adv-ci.com/blog/source/sequence-sfm/

How to Efficiently Learn

- 1. Read example program > 3 times Find good examples at *github*
- 2. STL, OpenCV, OpenGL, Eigen3, ...
- 3. Practice key components: SE3, RANSAC, ICP, Bundle Adjustment
- 4. Global -> Detail
- 5. Read the bible <<Multi-view Geometry>>

Standard Way

