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“) 1. SLAM - Application

/Ji)'

e SLAM: Simultaneous Localization and Mapping
» Applications: Robotics, UAVs, Cars, AR/VR, Smart phones, etc.

Y [m]

30

X[m]

[ 1700] 42.500 | pos: -22.157 -2.058

Demo can be downloaded at: http.//www.adv-ci.com/blog/source/fastslam-qui/




4) 1.SLAM - Application
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1. SLAM - Components

SIS
£ 3
z 42X

Needs accurate map

Mapping

e What is around me?

[Localization

e Wheream I?

Needs accurate position

Simultaneously minimization both error
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1. SLAM - Sensors

The methods and difficulty of
Sensors SLAM depend heavily on the
equipped sensors.

e Lasers  Cameras
e Accurate * Cheap
e Fast ¢ nght-WEIght
* Long history in research * Rich information
e Heavy * High computation cost
* Expensive * Work under assumptions

* Examples: SICK, Velodyne, Rplidar * Categories: monocular, stereo, RGBD

1
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1. SLAM - vSLAM

e VSLAM: SLAM that uses cameras as the only or main sensor.
* Active research area in recent decades.
* Considered basically solved in rigid and static environments.

o

.
pod. Found: 390/483 251/340 46/68 50/98 Map: 3021P, 14KF




1. SLAM — Map Representation
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* Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

 Landmark-based
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[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...
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4) 1.SLAM Pipeline
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1. SLAM is a hard problem!

SLAM: robot path and map are both unknown

Robot path error correlates errors in the map



, 1. SLAM is a hard problem!
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* In the real world, the mapping between observations
and landmarks is unknown

* Picking wrong data associations can have
catastrophic consequences

* Pose error correlates data associations



Probabilistic Way — EKF SLAM



4) Probabilistic Way

Laser Scans

Odometry Change

%




Probabilistic Way




@) Probabilistic Way




4) Probabilistic Way




, Probabilistic Way - Laser & Odometry data

e Laser data is the reading obtained from the scan

* The goal of the odometry data is to provide an
approximate position of the robot

* The difficult part about the odometry data and the
laser data is to get the timing right.



; Probabilistic Way - Landmarks

* Landmarks are features which can easily be re-observed and
distinguished from the environment.

* These are used by the robot to find out where it is (to localize
itself).

o Landmarks should be easily re-observable.

o Individual landmarks should be distinguishable from each other.
o Landmarks should be plentiful in the environment.

o Landmarks should be stationary.



, Probabilistic Way - Terminology

m Robot State (or pose): X; =[ X, Y, 9]
Position and heading
Xp4 = {Xq, -y X

m Robot Controls: U
Robot motion and manipulation
Ugt = {Uq,..., U}

m Sensor Measurements: Z;
Range scans, images, etc.
Z+=424,..., Z}

m Landmark or Map: m. or |[.
Landmarks or Map ' 1

m={m,...myorl={...1}



, Probabilistic Way - Terminology

m Observation model:  P(z, |x,) or P(Z, | x,,m)

The probability of a measurement z; given that the
robot is at position x; and map m.

= Motion Model: P(x,|x_.u,)

The posterior probability that action u, carries the
robot from x,_, to x.,.
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, Probabilistic Way — Graphical Model of Online SLAM

p(x. m|z ,u.)= j J J p(x,,,m|z,,u,,)dxdx,. . .dx,_,



4)) Probabilistic Way — Graphical Model of Full SLAM

p('xl;r , 1M | :l:r > ul:r )



, Probabilistic Way — Scan Matching

Maximize the likelihood of the i-th pose and
map relative to the (i-1)-th pose and map.

A 11
—argmax |p(z, | x. i) p(x |u, .5 ,)}
xf
current measurement \ robot motion

map constructed so far

Calculate the map " according to "mapping

with known poses” based on the poses and
observations.
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4) Probabilistic Way — Kalman Filter
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Algorithm Kalman_filter( .., 2., Uy, Z;):

Prediction:
u,=Au  +Bu,
S =A% AT +R

-1
Correction:
K, =%CH(CZCH+0)™
wo=p,+K (z,—C 1t,)
s =([-KC)Z,
Return p;, Z;

masurement Update (“Correct”)

Time Update (“Predict”)

(1) Compute the Kalman gain

(1) Project the state ahead

X, = AX,_ | +Bu,

- T
P, = AP,_AT+Q

- - —1
K, = PLHT(HP,HT +R)

(2) Update estimate with measurement z;,

2) Project the error covariance ahead & =% —_H5x.
(2) Proj Y, = X+ K (7, - HX))

(3) Update the error covariance

Initial estimates for X; _jandP, _,

v P, = (I-KH)P,



Probabilistic Way — EKF-SLAM

T Algorithm EKF_SLAM_known_correspondences(zs—1, X1, ut, 2t, 0
10 0 0--:0
01 0 0---0
o Ma .th N I d k . - = 2 =119 01 0:-90
P Wi andmarks:(3+ -dimensional EY
. —Zsinpu-ye+ 2t sin{ui-1,6 +wed)
Ga u SS I a n 3 At =pe—1+ FT ( Lcos py—1,0 — 2b cos(p—1,p +wiAt)
weAt
0 0 Zcospeip— 2 cos(u1,+wrldt)
x 4: Gy=I+FT (O 0 ;%:-sinm_hg—%':sin(u,_l,g +wAt) ) Fr
0 0 0
5: B =GB 1GT +FT Re Fe
ar 0 0
6: Q= 0 o O
0 0 o4
7: for all observed features z{ = (r} ¢} s3)T do
8 j=c
9: if landmark j never seen before
. Rz ( B ) ( 7y ¢°8(¢§+ﬁe,o; )
10: By j=| Ay |+ 7 sin(éf+ By
Be(x,,m) = Bje s 0
. 1 11: endif
12: 6=§.6’° ):(‘:"*"E“")
8y Hiy = Bty
13: g=108"8
= westio-n )
14: 2= atan2(dy,dz) ~ fre
s
1 0 0 00 0 0 O 0---0
o010 0.0 0 0 0 0--:0
0o 0 1 0.0 0 0 0 0---0
15 F ;= g 0 0 0---0 1 0 O 0---0
o 0 o0 00 0O 1 0O 0---0
o 0 0 0---0 0 0 1 0---0
353 3N-3;
) Vs —aby 0 V@ i& O
. . 16: Hi=1 by S -1 =8 =6 O | Fu;
e Can handle hundreds of dim nraas
Imensions . Ki = £ M 0 HIT 4+ Q0
18 B =+ Kz - 5
19: £ =(I-Ki H}) 5
20: endfor
21: pe = fit
22: T =5
23 return s, St




, Probabilistic Way — EKF-SLAM
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e Approximate the SLAM posterior with a high-
dimensional Gaussian [smith & Cheesman, 1986] ...

® Single hypothesis data association



“4)) Probabilistic Way — EKF-SLAM

Map Correlation matrix



Probabilistic Way — EKF-SLAM

Map Correlation matrix



Probabilistic Way — EKF-SLAM

Map Correlation matrix
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Probabilistic Way — Summary

Quadratic in the number of landmarks: O(n?)
Convergence results for the linear case. BB oo
Can diverge if nonlinearities are large! P |
Has been applied successfully in large-scale environments.
Approximations reduce the computational complexity.

: j‘ Probabilistic
& ROBOTICS

Limitations:
 Computational efficiency is worse then bundle-based method
e Can not handle large number of observations
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Visual SLAM — Feature vs. Direct

Feature-based Methods Direct methods

» Select 100-1000 representative points (or * Estimate the motion directly from pixels.

lines, planes) and discard the others. . . .
* Use all information from images.

* Estimation the motion from the key-points. D
* Dense

* Track the key-points using descriptors. e Slower

* Sparse « Difficult to remove the outliers

* Robust to outliers * Needs good initialization
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Visual SLAM - Basic Theory

Triangulation same point in two
Left bascline  Rijoht Images to get the 3D point.
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x Keypoint in first
image

x" Corresponding
Keypoint in second
image

4
.----

AL
C1

E2E R

L2
C2

Vlsual SLAM — How to Estimate Camera Position and Orientation

Estimating F by
several keypoints
correspondence

x'TFx =0

F — Fundamental Matrix

Estimate E throuh F
and K

E = KTFK

E — Essential Matrix

Get relative
R t position and
’ orientation of
second image

Assuming the first camera is located at
origin, then the second camera’ s [R|t]
can be estimated.
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“4) Visual SLAM - Feature Based Methods

Input
Image

Keypoints
detection

Tracking
J Local Triangul
: SR A BA ation

Global Optimization
Minimization all difference between
3D projections and keypoints

¥

Data
Management

&
<

) Yes
Initialized?
Yes l
Estimate Estimate Triangul ’
F Rt ation ’

Initialization

v

3D Map
Camera




Parallel Tracking and Mapping
for Small AR Workspaces

Extra video results made for
ISMAR 2007 conference

Georg Klein and David Murray
Active Vision Laboratory
University of Oxford

G. Klein, D. Murray, Parallel Tracking and Mapping for Small AR Workspaces, 2007

Stereo initialisation

Update keyframe
data association

'

Integrate
keyframe

!

Add new
features

New keyframe?

No

Locally
converged?

Yes

Globally
converged?

Yes

Update
data association

e

Feature Based Methods - Parallel Tracking and Mapping

Local
bundle adjust

Global
bundle adjust

Sleep Sms




Parallel Tracking and Mapping
for Small AR Workspaces

Extra video results made for
ISMAR 2007 conference

Georg Klein and David Murray
Active Vision Laboratory
University of Oxford

G. Klein, D. Murray, Parallel Tracking and Mapping for Small AR Workspaces, 2007

Feature Based Methods - Parallel Tracking and Mapping

Tracking and Mapping are separated, and run
in two parallel threads

Mapping is based on keyframes, which are
processed using bundle adjustment

The map is densely intialised from a stereo
pair

New Points are initialised with an epipolar
search

Large numbers of points are mapped



Feature Based Methods - ORB-SLAM

ORB-SLAM

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardés

{raulmur, josemari, tardos} @unizar.es

Instituto Universitario de Investigacion ~~ “ssasane

en Ingenieria de Aragén g
Universidad Zaragoza

Universidad
Zaragoza

*

Frame

MAP

3D ORB

Covisibility
Graph

PLACE

RECOGNITION

Vocabulary

v

Recognition
Database

TRACKING
|| Extract La;:‘:r::ne Track Optimize New
ORB Relocation Local Map Pose KeyFrame?
;
KeyFrame
LOCAL MAPPING *
iy Local Update Triangulate Bow
o[ Redundant f} “g, " || Local ORB ||Conversion
| KeyFrames Area
.
‘
e E—
LOOP CLOSER 1 ;
: i
: Optimize :
Loop Compute | Loop ‘I’Dose Global |}
Detection Sim3 ' | Fusion BA
Graph

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardds. ORB-SLAM: A Versatile and Accurate Monocular SLAM System, 2015




Feature Based Methods - ORB-SLAM

ORB-SLAM

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardés

{raulmur, josemari, tardos} @unizar.es

Instituto Universitario de Investigacion ~~ “ssasane = >
°€ ‘§ en Ingenieria de Aragén g Unlver5|dad
@ UniversidadZaragoza Al Zaragoza

® Couvisibility information to operate at large scale
® BoW based place recognition system for
relocalisation and loop closing

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardds. ORB-SLAM: A Versatile and Accurate Monocular SLAM System, 2015



Dense Tracking and
Mapping in Real-Time

R.A. Newcombe, S.J. Lovegrove and A.J. Davison, DTAM: Dense Tracking and Mapping in Real-Time, 2011



Direct Based Methods — Dense Tracking and Mapping (DTAM)

® Utilizing a coarse base surface model as
the initial starting point for dense
reconstruction
® Depth map creation is pipelined, and
DTAM . multiple depth maps are
. straightforwardly fused to create
complete scene reconstructions

De n Se Tra C ki n g a n d ® Using GPU to accelerate the speed

Mapping in Real-Time

R.A. Newcombe, S.J. Lovegrove and A.J. Davison, DTAM: Dense Tracking and Mapping in Real-Time, 2011



Direct Based Methods — Large-Scale Direct Monocular SLAM
(LSD-SLAM)

Semi-Dense Visual Odometry
for AR on a Smartphone

Thomas Schéps, Jakob Engel, Daniel Cremers i New Tnage E
ISMAR 2014, Munich | - !

v

Track on Current KF:
I [ estimate SE(3) transformation
Current KF

T
1 i !
| - | !
’ 5 | i
1 | .- g ; min Y | i
; gese(3) 5 | y
1 | . ' I "y
I i |
| J ! " = | :
| P 2 [
nce |
ERan
P o
| P

Tracking 1 E Depth Map Estimation ' : Map Optimization

Current Map
o~ { -

Add KF to Map

[

5 1| find closest keyfr
ri(2.&) !

Trp@.8) |5 } '

Computer Vision Group
Department of Computer Science
Technical University of Munich

J. Engel, T. Schops, and D. Cremers, LSD-SLAM: Large-Scale Direct Monocular SLAM, 2014



(LSD-SLAM)

Semi-Dense Visual Odometry
for AR on a Smartphone

Thomas Schéps, Jakob Engel, Daniel Cremers
ISMAR 2014, Munich

e

Computer Vision Group
Department of Computer Science
Technical University of Munich

Direct Based Methods — Large-Scale Direct Monocular SLAM

Using direct image alignment coupled with
filtering-based estimation of semi-dense depth
maps

Probabilistically consistent incorporation of
uncertainty of the estimated depth into tracking

J. Engel, T. Schops, and D. Cremers, LSD-SLAM: Large-Scale Direct Monocular SLAM, 2014



Semi-direct tracking and mapping (SDTAM)

Tracking Mapping Global Optimization
3 - Detect loop with DBoW2
| R -Close loop with pose
New Frame S N graph optimization
—
Yes LT T
‘L (‘*——.h.,,;‘* ("’5?“&7.‘;_;:#
Track Last Keyframe: Add KF to Map: g

-Compute BoW

-Create new mappoints
->Data association {}
->Remove bad mappoints

> u'=argminy wrlTr,

-Track neighbors Fusion
Yes Local Optimization: a
e B
(wPy=argminy ¥ welT]e N —
Refine Current KF: £ neregee =
> =argmin 3 welS]e, TGS ) ]
= iFie

* The direct method is adopted to track current motion
with high-speed, followed with a motion refinement
based on feature correspondences.

* Balance between accuracy and efficiency can be
realized.

Shuhui Bu, Yong Zhao, et al., Semi-direct Tracking and Mapping with RGB-D Camera for MAV, MTAP, 2016.



Visual Odometry - Introduction

e Basic Idea

* Estimate the ego-motion between
frames.

* Basically Two-view geometry. o ém » ~@E\B

f’d’ e b

* Problem
* Data: a set of images

* Goal: Estimate the camera motion and o1 02
reconstruct the environment

 Structure-from-Motion (SfM) or vSLAM




Visual Odometry - Pipeline

* Feature-based Methods

* Steps:
1. Extract feature key-points and descriptors.
B Common features: FAST, SIFT, SURF, ORB

2. Find the corresponding matches.
B Brute-force or kNN match.

3. Estimate the ego-motion.
M PnP or bundle adjustment.

* Comments:

1. Extraction and matching cannot be always guaranteed to
be successful.

2. Tracking may lost if the motion is too fast.

3. Ego-motion solution does not always exist or global
optimal.




Visual Odometry - Pipeline

Ego-motion estimation

Assume a point X is observed in two frames whose pixel positions are x4, x, ZLL.A_J

Pose from camera 1 to 2: R,t, Camera matrix: C

/11x1 = CX, /’{zxz = C(RX + t)

Known: x4, x5 C Goal:R,t, X £
c
Bundle Adjustment: minimization of the re-projection error: C = g f Cx
y Sy
0O 0 1

N
- iy i,
min > 18] — X1 + 1] - C(RX; - ¢)]1
=

Unfortunately: non-linear, non-convex, on Lie manifold |:>Difficu|t to get a global optimal solution.



Visual Odometry - Pipeline

* Feature-based Methods

N
H t | i z Jod _ X2 JoJ _ RX. — 2
owtosolve | min 1A]x] — CX;|1? + |A5x; — C(RX; — o) ||

j=1
Via Epipolar Geometry: Via Optimization:
* Build epipolar constraints: » Guess a good initial value (from last frame,
#/TRx) =0 -
1 2 constant velocity models or other sensors).
* Find the Essential matrix or fundamental matrix: « Iterate! (Gauss-Newton or LM)
E=TR

e Solve R,t fromE .
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Visual Odometry — Scale?

* Feature-based Methods
* Monocular SLAM: reconstruct the 3D points: X;

* Scale indeterminate problem:

 Setting relative base-line to 1 => no pure rotation

X,R,t

N
minz 1 x) = X |17 + 10x) — C(RX; — £))12
=

BE 2

BiK: 40% @E: 3/55FM

HEM: M78E2EXZE L~
Pk EiEERSE): 398k : ~
HITHRE: 5% ABk: FEE -~ 8
L. B AR

BRE: WREEKR 1HEE: 2800

REEET: BEALBPHTES, MES5K
FRFSEHMEN. FFHRHHLE, KTE
SHREIER, AWM RBRAST.

EX} 1300
’b‘i 1200
D e— 1000

EX e 1000

4m? 40m? 1.8 m?




Visual SLAM — Direct Methods

e Direct Methods

minE (§) = Z (IKF(X) —1(0)(95» Dyr(x), f)))z

XENKFE

[: Image gray scale value

U D: Depth map of pixels
w: Projection function

* Minimization the gray scale values of pixels.
* Assume the camera moves slowly, smoothly and the light condition does not change much.

* Reconstruct dense results instead of sparse feature points.



Visual SLAM — Summary

* So in visual odometry, we
feature points (lines, planes);
e Estimate the between consecutive frames;
* Reconstruct the (sparse key-points or dense models);

e But they may:

e Drift during the motion; Solutions
. . ) * Global optimization
* Inconsistent with other parts of environments; . Loop closure

* Lost due to occlusion or fast motion. * Re-localization



Optimization



4)) Optimization

* In history, we have two kinds of back-ends X = [xb, xL19°°°9an]
* Filter Status Variable
* Optimization

* In filter methods, we use past information to

maintain the current status. Xp — f(xk—lauk—1)
— T T
P, = AP_ A +WQW
e Extended Kalman Filter Predict
P i+l I h=h(x,,0
Motion: X, —f(xp,ul,)+wl_ ( f ) )
i K =PH" (HPH™ +VRU")
Observation:  z;; =h(x,,x;)+V,

x, =x_ +K(z—h)
Update



4) Global Optimization

A}xi).

* Global optimization: reduce the drifts

Full-SLAM or Graph-based SLAM
Considering all the past
observations and put them into a
large optimization problem.
Usually represented as a Graph:

G ={V,E}

Vertex: the optimization variables
Edges: the error terms (or
constraints)

A large MSE:

N

min Z ex (Zi, 1) " Qe (z, xi)
k=1




4)) Global Optimization — Graph and Sparse

a;]’,».'

* Put them together to build a error function
* @Guess a good initial value and then iterate it!

« Just a large bundle adjustment. Pz - «=
Zij \\
* Advantages: Pi
* Use more information than filters. K
e Convenient to represent the loops.
* Sparse structure in the graph helps o
computation! )
* Mix different vertices and edges! N g

Po Up \31/ u; P2

* Disadvantage:
* Hard to maintain the graph size.

* Global optimization still needs more A sample graph
computation time comparing with filters. P: poses of the camera (or robot)
Z: observations
* Tools: g2o, ceres, etc. K: uncalibrated parameters

U: motion constraints



4) Global Optimization — Loop Constraints

| The loop constraints can help
§ to correct the drift.



“4) Global Optimization —Summary

* Problems in graph optimization:
 What happens if | add wrong edges into the graph?

* Robust error term
 What if VO gets lost?
* Measurement of the connectivity
* The graph will grow over time.
* Long-term SLAM, needs pruning
* How to fuse two different graph?
* Multi-robot SLAM



Loop Closure



Loop Closure

 What is loop closure?

* To recognize visited places.
* VO differs with SLAM because it usually don’t close the loops f/

* Therefore VO will have accumulated drift.




Loop Closure

* The Key of cIosing |OOpS in VSLAM: Odometry-based Approaches

* Are the positions of cameras near to each other? " Assume the estimated posts are
accurate enough.

* Are the images look the same? * Recursive in logic.

Appearance-based Approaches
* Only consider the observed image.
* State of the art in vSLAM.

YES

Scene 2224

Looks different
but the same

Looks same
but not

-

False Positive False Negative



Loop Closure

* How to measure the similarity of images?

* Directly A-B? -What if the view and light changes?
* We need more complicated models: Bag-of-Words From many images: nose, eyes, hairs, ...
2} —PI Bag of ‘words’ .
B 3 Dictionary

4

Face = 1 nose + 2 eyes + 1 hairs + ...

J

Features -> Words

D\




Loop Closure

* Bag-of-Words loop closure approaches:

A large Features: Clustering
' Dictionary
image set C> SIFT, ORB :>
Image A
Image B

* How to evaluate loop closure methods?
* Precision-recall curve

* Approaches from ML: Auto-encoders, CNNs, etc.

Words A= 2 car + 1 people

Words A= 1 car + 1 cat

Compute
Similarity
and
Raise loop
hypothesis




Loop Closure — Deep Learning

2 Divide Ll !

v A ol
p—-

Image patches

Image description matrix

Patch dcscriﬂtors

‘ —» I Comirgc -
i —— ® Using CNN to extract representative
Dot
g product feature

Image patches

Patch descriﬁlors

| .
Divide ‘ ‘ d _Composc and transpose J
| - —_— . —_—
————
Constructing the image description matrix
Probability of
R
same place
. Irr'lag'e I 2lculate compare
similarity
Wei
eight of [
each patch

Adaptive weighting of similarity matrix

® Considering spatial relationship between

objects in scene

Similarity matrix

Qing Li, et al., Place Recognition Based on Deep Feature and Adaptive Weighting of Similarity Matrix, Neurocomputing, 2016.
Part of source codes: http://www.adv-ci.com/blog/source/pi-cnn and http://www.adv-ci.com/blog/source/pi-slic




Map



* Map is one of the major outputs of SLAM
* However it depends on what is SLAM applied for.

: o, r.‘r.\"_'
Seup. 3 |"] T :
13 3 ‘.N-.- St 'J' i",-*_ -t .

l

4
I e
l | 1 ? |4J‘
5 - _ _ [ o [
L.lr,l L I i|. ﬁ..La
s 2 al 1125 =

Metric map Topological map



In mapping we seek an efficient way to represent the environment.

Metric Maps Topological Maps
Accurate * Flexible
Navigation * Low-cost
Hard to extend * Inaccurate
Expensive in storage * Need local models to navigate
Examples:
Grid map

Occupancy map
Raw point cloud map




* Maps used in Navigation:

* Occupancy maps: model the possibility if a point is occupied

; ﬁm
Y e e i
B Lo - 1
b5 £
; *
Y o menem i T

2D Occupancy map (ROS)

3D Occupancy map (Octomap)



* Maps used in Reconstruction:
e TSDF (Truncated signed distance function)
* Surfels




Conclusion




@) Conclusion
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Standard Way

* In a typical SLAM system, we use
* VO to estimate the ego-motion between frames
* Optimization to handle the global trajectory
* Loop closure to correct the draft
* Map to describe the environment

Reading: the MVG bible
(need ~2 years)

@

‘

Crying: Not Working At All

* |s that all about SLAM?
* We haven’t talked about coding yet.

LSD-SLAM Analysis: http://blog.csdn.net/lancelot vim
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Future of SLAM

* Semantics are necessary to build bigger and better SLAM systems.

* Will end-to-end learning soon replace the mostly manual labor involved
in building today’s SLAM systems?

* Use SLAM to fuel Deep Learning




@) Open-source Codes
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Qualified open-source SLAM solutions

Rgbd-slam-v2
ORB-slam
LSD-slam
Hector-slam
SVO
RTABslam
Dvo-slam

Kinect Fusion

Kinfu_large_scale

DTAM

https://github.com/felixendres/rgbdslam v2
https://github.com/raulmur/ORB SLAM

https://github.com/tum-vision/Isd slam

https://github.com/tu-darmstadt-ros-pkg/hector slam

https://github.com/uzh-rpg/rpg svo

https://github.com/introlab/rtabmap ros#rtabmap ros

https://github.com/tum-vision/dvo slam

http://research.microsoft.com/en-
us/projects/surfacerecon/

http://pointclouds.org/documentation/tutorials/using kin
fu large scale.php

https://github.com/anuranbaka/OpenDTAM




) Conclusion

Ex 2%

* For a student starting to work in SLAM, one should learn:
* Math: geometry, probabilistic even ML
* Coding skills:
* Linux
* C++
e Libraries: ROS, OpenCV, PCL, g2o0, DBoW?2, libpointmatcher, octomap, Fabmap, ceres ...
* Python
* Future issues:
* Dynamic, Multi-robots, Semantic, Low-weight devices, Mobile platforms



