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1. SLAM - Application

• SLAM: Simultaneous Localization and Mapping

• Applications: Robotics, UAVs, Cars, AR/VR, Smart phones, etc.

Demo can be downloaded at: http://www.adv-ci.com/blog/source/fastslam-gui/



1. SLAM - Application

Indoors

Space

Undersea

Underground



Localization
• Where am I?

Mapping
• What is around me?

Needs accurate map

Needs accurate position

Simultaneously minimization both error

1. SLAM - Components



• Lasers

• Accurate

• Fast

• Long history in research

• Heavy

• Expensive

• Examples: SICK, Velodyne, Rplidar

• Cameras

• Cheap

• Light-weight

• Rich information

• High computation cost

• Work under assumptions

• Categories: monocular, stereo, RGBD

Sensors

The methods and difficulty of 

SLAM depend heavily on the 

equipped sensors.

1. SLAM - Sensors



• vSLAM: SLAM that uses cameras as the only or main sensor.

• Active research area in recent decades. 

• Considered basically solved in rigid and static environments.

1. SLAM - vSLAM



1. SLAM – Map Representation

• Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…



传感器数据
•图像
•点云

配准
•特征匹配+ICP
•直接配准

后端
•滤波器
•优化

输出结果
•轨迹
•地图

回环检测

Loop Closing

1. SLAM Pipeline



1. SLAM is a hard problem!

SLAM: robot path and map are both unknown

Robot path error correlates errors in the map



1. SLAM is a hard problem!

• In the real world, the mapping between observations 
and landmarks is unknown

• Picking wrong data associations can have 
catastrophic consequences

• Pose error correlates data associations

Robot pose

uncertainty



Probabilistic Way – EKF SLAM



Probabilistic Way

Laser Scans

Odometry Change

EKF New 

Observations

EKF Re-observation

EKF Odometry update

Data Association

Landmark Extraction



Probabilistic Way



Probabilistic Way



Probabilistic Way



Probabilistic Way - Laser & Odometry data

• Laser data is the reading obtained from the scan

• The goal of the odometry data is to provide an 
approximate position of the robot

• The difficult part about the odometry data and the 
laser data is to get the timing right.



Probabilistic Way - Landmarks

• Landmarks are features which can easily be re-observed and 
distinguished from the environment. 

• These are used by the robot to find out where it is (to localize 
itself).

o Landmarks should be easily re-observable.

o Individual landmarks should be distinguishable from each other.

o Landmarks should be plentiful in the environment.

o Landmarks should be stationary.



Probabilistic Way - Terminology



Probabilistic Way - Terminology



Probabilistic Way - Bayes Filter



Probabilistic Way – Graphical Model of Online SLAM



Probabilistic Way – Graphical Model of Full SLAM



Probabilistic Way – Scan Matching



Probabilistic Way – Kalman Filter 



Probabilistic Way – EKF-SLAM



Probabilistic Way – EKF-SLAM



Probabilistic Way – EKF-SLAM



Probabilistic Way – EKF-SLAM



Probabilistic Way – EKF-SLAM



Probabilistic Way – Demo

Demo can be downloaded at: http://www.adv-ci.com/blog/source/fastslam-gui/



Probabilistic Way – Summary

• Quadratic in the number of landmarks: O(n2)

• Convergence results for the linear case.

• Can diverge if nonlinearities are large!

• Has been applied successfully in large-scale environments.

• Approximations reduce the computational complexity. 

Limitations:

• Computational efficiency is worse then bundle-based method

• Can not handle large number of observations



Visual SLAM



Visual SLAM – Different Ways

Feature Direct

Semi-Direct



Feature-based Methods

• Select 100-1000 representative points (or 
lines, planes) and discard the others.

• Estimation the motion from the key-points.

• Track the key-points using descriptors.

• Sparse

• Robust to outliers

Direct methods

• Estimate the motion directly from pixels.

• Use all information from images.

• Dense

• Slower

• Difficult to remove the outliers

• Needs good initialization

Visual SLAM – Feature vs. Direct



Visual SLAM – Basic Theory

Triangulation same point in two 
images to get the 3D point.Left Rightbaseline

depth



Visual SLAM – How to Estimate Camera Position and Orientation

相机1光心
C1

x

射线

相机1图像 相机2图像

相机2光心
C2

极线

基线

X

x’

x���� � 0x   Keypoint in first 
image
x’Corresponding
Keypoint in second 
image

E � K�FK

R, t

Estimating F by 
several keypoints
correspondence

E – Essential Matrix 
Get relative 
position and 
orientation of 
second image

F – Fundamental Matrix

Estimate E throuh F 
and K

Assuming the first camera is located at 
origin, then the second camera’s [R|t] 
can be estimated.



Visual SLAM – Feature Based Methods

Input 
Images

Image Queue

Keypoints
detection

Initialized?

Estimate 
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ation
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3D Map
Camera

Initialization

3D-2D PnP Local 
BA

Global Optimization
Minimization all difference between 

3D projections and keypoints

Data 
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Tracking

Triangul
ation

Yes



Feature Based Methods - Parallel Tracking and Mapping 

G. Klein, D. Murray, Parallel Tracking and Mapping for Small AR Workspaces, 2007 



Feature Based Methods - Parallel Tracking and Mapping 

G. Klein, D. Murray, Parallel Tracking and Mapping for Small AR Workspaces, 2007 

� Tracking and Mapping are separated, and run 

in two parallel threads

� Mapping is based on keyframes, which are 

processed using bundle adjustment

� The map is densely intialised from a stereo 

pair

� New Points are initialised with an epipolar

search

� Large numbers of points are mapped



Feature Based Methods – ORB-SLAM

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System, 2015



Feature Based Methods – ORB-SLAM

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System, 2015

� Covisibility information to operate at large scale

� BoW based place recognition system for 

relocalisation and loop closing



Direct Based Methods – Dense Tracking and Mapping (DTAM)

R.A. Newcombe, S.J. Lovegrove and A.J. Davison, DTAM: Dense Tracking and Mapping in Real-Time, 2011



Direct Based Methods – Dense Tracking and Mapping (DTAM)

R.A. Newcombe, S.J. Lovegrove and A.J. Davison, DTAM: Dense Tracking and Mapping in Real-Time, 2011

� Utilizing a coarse base surface model as 

the initial starting point for dense 

reconstruction

� Depth map creation is pipelined, and 

multiple depth maps are 

straightforwardly fused to create 

complete scene reconstructions

� Using GPU to accelerate the speed



Direct Based Methods – Large-Scale Direct Monocular SLAM 
(LSD-SLAM)

J. Engel, T. Schops, and D. Cremers, LSD-SLAM: Large-Scale Direct Monocular SLAM, 2014



Direct Based Methods – Large-Scale Direct Monocular SLAM 
(LSD-SLAM)

J. Engel, T. Schops, and D. Cremers, LSD-SLAM: Large-Scale Direct Monocular SLAM, 2014

� Using direct image alignment coupled with 

filtering-based estimation of semi-dense depth 

maps

� Probabilistically consistent incorporation of 

uncertainty of the estimated depth into tracking



Semi-direct tracking and mapping (SDTAM)

Shuhui Bu, Yong Zhao, et al., Semi-direct Tracking and Mapping with RGB-D Camera for MAV, MTAP, 2016.

• The direct method is adopted to track current motion 

with high-speed, followed with a motion refinement 

based on feature correspondences. 

• Balance between accuracy and efficiency can be 

realized.



• Basic Idea

• Estimate the ego-motion between 
frames.

• Basically Two-view geometry.

• Problem

• Data: a set of images

• Goal: Estimate the camera motion and 
reconstruct the environment

• Structure-from-Motion (SfM) or vSLAM

Visual Odometry - Introduction



• Feature-based Methods

• Steps:
1. Extract feature key-points and descriptors.

� Common features: FAST, SIFT, SURF, ORB

2. Find the corresponding matches.
� Brute-force or kNN match.

3. Estimate the ego-motion.
� PnP or bundle adjustment.

• Comments:
1. Extraction and matching cannot be always guaranteed to 

be successful. 

2. Tracking may lost if the motion is too fast.

3. Ego-motion solution does not always exist or global 
optimal.

Visual Odometry - Pipeline



• Ego-motion estimation

• Assume a point     is observed in two frames whose pixel positions are 

• Pose from camera 1 to 2:        , Camera matrix: 

• Known: Goal: 

• Bundle Adjustment: minimization of the re-projection error:

• Unfortunately: non-linear, non-convex, on Lie manifold Difficult to get a global optimal solution.
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Visual Odometry - Pipeline



• Feature-based Methods
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Via Epipolar Geometry:

• Build epipolar constraints:

• Find the Essential matrix or fundamental matrix:

• Solve         from     .      

How to solve 
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Via Optimization:

• Guess a good initial value (from last frame, 

constant velocity models or other sensors). 

• Iterate! (Gauss-Newton or LM) 
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Visual Odometry - Pipeline



• Feature-based Methods

• Monocular SLAM: reconstruct the 3D points:  

• Scale indeterminate problem: 

• Setting relative base-line to 1 => no pure rotation
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4m? 40m? 1.8 m? 

Visual Odometry – Scale?



• Direct Methods

• Minimization the gray scale values of pixels.

• Assume the camera moves slowly, smoothly and the light condition does not change much.

• Reconstruct dense results instead of sparse feature points.
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Image gray scale value

Depth map of pixels

Projection function

Visual SLAM – Direct Methods



• So in visual odometry, we

• Track feature points (lines, planes);

• Estimate the ego-motion between consecutive frames;

• Reconstruct the local map (sparse key-points or dense models);

• But they may: 

• Drift during the motion;

• Inconsistent with other parts of environments;

• Lost due to occlusion or fast motion.

Solutions

• Global optimization

• Loop closure

• Re-localization

Visual SLAM – Summary



Optimization



• Extended Kalman Filter

• In history, we have two kinds of back-ends

• Filter

• Optimization

• In filter methods, we use past information to 
maintain the current status.
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• Global optimization: reduce the drifts

Full-SLAM or Graph-based SLAM

• Considering all the past 

observations and put them into a 

large optimization problem.

• Usually represented as a Graph: 

• Vertex: the optimization variables

• Edges:  the error terms (or 

constraints)

• A large MSE:
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Global Optimization



A sample graph

P: poses of the camera (or robot)

Z: observations

K: uncalibrated parameters

U: motion constraints

• Put them together to build a error function

• Guess a good initial value and then iterate it!

• Just a large bundle adjustment.

• Advantages:

• Use more information than filters.

• Convenient to represent the loops.

• Sparse structure in the graph helps 

computation!

• Mix different vertices and edges!

• Disadvantage:

• Hard to maintain the graph size.

• Global optimization still needs more 

computation time comparing with filters.

• Tools: g2o, ceres, etc.

Global Optimization – Graph and Sparse



The loop constraints can help 

to correct the drift.

Global Optimization – Loop Constraints



• Problems in graph optimization:

• What happens if I add wrong edges into the graph?

• Robust error term

• What if VO gets lost?

• Measurement of the connectivity

• The graph will grow over time.

• Long-term SLAM, needs pruning

• How to fuse two different graph?

• Multi-robot SLAM

Global Optimization – Summary



Loop Closure



• What is loop closure?

• To recognize visited places.

• VO differs with SLAM because it usually don’t close the loops

• Therefore VO will have accumulated drift.

Loop Closure



• The Key of closing loops in vSLAM:

• Are the positions of cameras near to each other?

• Are the images look the same?

Odometry-based Approaches

• Assume the estimated posts are 

accurate enough.

• Recursive in logic.

Appearance-based Approaches

• Only consider the observed image.

• State of the art in vSLAM.YES

Looks same 

but not

Looks different 

but the same

False Positive False Negative

Loop Closure



• How to measure the similarity of images?
• Directly A-B ? -What if the view and light changes?

• We need more complicated models: Bag-of-Words From many images: nose, eyes, hairs, …

Dictionary

Face = 1 nose + 2 eyes + 1 hairs + …

Features -> Words

Loop Closure



• Bag-of-Words loop closure approaches:

• How to evaluate loop closure methods?

• Precision-recall curve

• Approaches from ML: Auto-encoders, CNNs, etc.

A large 

image set

Features: 

SIFT, ORB
Dictionary

Clustering

Image A

Image B

Words A= 2 car + 1 people

Words A= 1 car + 1 cat

Compute 

Similarity 

and

Raise loop 

hypothesis

Loop Closure



Loop Closure – Deep Learning

� Using CNN to extract representative 

feature

� Considering spatial relationship between 

objects in scene

Qing Li, et al., Place Recognition Based on Deep Feature and Adaptive Weighting of Similarity Matrix, Neurocomputing, 2016.

Part of source codes: http://www.adv-ci.com/blog/source/pi-cnn and http://www.adv-ci.com/blog/source/pi-slic



Map



• Map is one of the major outputs of SLAM

• However it depends on what is SLAM applied for.

Metric map Topological map

Others

Map



In mapping we seek an efficient way to represent the environment.

Metric Maps
• Accurate

• Navigation

• Hard to extend

• Expensive in storage

• Examples:

• Grid map

• Occupancy map

• Raw point cloud map

Topological Maps
• Flexible

• Low-cost

• Inaccurate

• Need local models to navigate

Map



• Maps used in Navigation:

• Occupancy maps: model the possibility if a point is occupied

2D Occupancy map (ROS) 3D Occupancy map (Octomap)

Map



• Maps used in Reconstruction:

• TSDF (Truncated signed distance function)

• Surfels

Map



Conclusion



• In a typical SLAM system, we use

• VO to estimate the ego-motion between frames

• Optimization to handle the global trajectory

• Loop closure to correct the draft

• Map to describe the environment

• Is that all about SLAM?

• We haven’t talked about coding yet.

Conclusion

LSD-SLAM Analysis: http://blog.csdn.net/lancelot_vim



• Semantics are necessary to build bigger and better SLAM systems. 

• Will end-to-end learning soon replace the mostly manual labor involved 
in building today’s SLAM systems?

• Use SLAM to fuel Deep Learning

Future of SLAM



Qualified open-source SLAM solutions

Name Site

Rgbd-slam-v2 https://github.com/felixendres/rgbdslam_v2

ORB-slam https://github.com/raulmur/ORB_SLAM

LSD-slam https://github.com/tum-vision/lsd_slam

Hector-slam https://github.com/tu-darmstadt-ros-pkg/hector_slam

SVO https://github.com/uzh-rpg/rpg_svo

RTABslam https://github.com/introlab/rtabmap_ros#rtabmap_ros

Dvo-slam https://github.com/tum-vision/dvo_slam

Kinect Fusion http://research.microsoft.com/en-

us/projects/surfacerecon/

Kinfu_large_scale http://pointclouds.org/documentation/tutorials/using_kin

fu_large_scale.php

DTAM https://github.com/anuranbaka/OpenDTAM

Open-source Codes



• For a student starting to work in SLAM, one should learn:

• Math: geometry, probabilistic even ML

• Coding skills:

• Linux

• C++

• Libraries: ROS, OpenCV, PCL, g2o, DBoW2, libpointmatcher, octomap, Fabmap, ceres …

• Python

• Future issues:

• Dynamic, Multi-robots, Semantic, Low-weight devices, Mobile platforms

Conclusion


