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The accurate assessment of local myocardial strain is important for diagnosing ischemic heart diseases because decreased myocardial motion
often appears in the early stage. Calculating the spatial derivation of displacement is a necessary step in the strain calculation, but the numerical
calculation is extremely sensitive to noise. Commonly used smoothing methods are the moving-average and median filters; however, these
methods have a trade-off between spatial resolution and accuracy. A novel smoothing/fitting method is proposed for overcoming this problem. In
this method, the detected displacement vectors are discretized at mesh nodes, and virtual springs are connected between adjacent nodes. By
controlling the elasticity of the virtual springs, misdetected displacements are fitted without the above problem. Further improvements can be
achieved by applying a Kalman filter for position tracking, and then calculating the strain from the accumulated displacement vectors. From the
simulation results, we conclude that the proposed method improves the accuracy and spatial resolution of the strain images.

© 2010 The Japan Society of Applied Physics

1. Introduction

One of the aims in cardiac imaging and image analysis is to
assess the regional kinematic functions of the left ventricle
(LV) of the heart. From these regional functions, quantita-
tive estimates of the location and extent of ischemic
myocardial injury can be obtained. Regional left ventricular
deformation can be determined using the principal imaging
modalities, including echocardiography, radionuclide imag-
ing, computed tomography, and magnetic resonance imaging
(MRI).

MRI tagging is regarded as a reference method for the
assessment of LV deformation, because it can provide angle-
independent three-dimensional (3D) motion of the heart
muscle over time, whereas with other imaging methods,
tracking is usually limited to the shape of the inner and outer
contours of the heart wall. Typically, only 2—3 tagging lines
can be obtained within the myocardium; therefore, its spatial
resolution is low although the accuracy of estimated
displacements at tracking points is high. In addition to its
low spatial resolution, MRI tagging is limited by its
shortcomings of low frame-rate, high cost, and time-
consuming.

Compared with MRI tagging, echocardiography has the
advantages of high frame-rate, high spatial resolution, and
low cost. The widely applied echocardiography methods for
cardiac imaging are B-mode imaging, M-mode imaging,
tissue Doppler imaging (TDI),'™ and strain-rate imaging
(SRI).>"” The ventricle shape can be visualized by B-mode
imaging, but quantitative information on motion is difficult
to analyze. Through M-mode imaging, the myocardial
motion of a specified scan line can be visualized within a
certain period, but motion information can only be obtained
in the beam direction. TDI and SRI also only provide motion
information in the beam direction.® Furthermore, if the
range of motion is larger than one-quarter of a wavelength,
aliasing may occur, precluding accurate myocardial strain
measurement.

To overcome the limitation of angle dependence in
echocardiography, two types of studies have been per-
formed: cardiac motion analysis and speckle-tracking echo-
cardiography (STE). The cardiac motion analysis method-
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ology uses various medical images as sources, and
incorporates a constrained model for fitting the results. For
example, Papademetris et al. proposed a method” by which
myocardial boundaries are extracted from B-mode images.
Then the myocardial strain tensors are calculated by
applying the finite element method (FEM). However, this
method uses segmentation results, therefore, the spatial
resolution is low. STE®!%!'2 provides another way of
tracking motion in ultrasound. This method provides the
myocardial tissue velocity, strain, and strain rate, independ-
ent of the cardiac translation and beam angle. However, one
type of STE'®!D is based on the speckle tracking or image
registration of B-mode images. However the spatial reso-
lution of B-mode images is much lower than that of raw RF
data, therefore the spatial resolution is not very perfect.
Another type of STE®!? is based on the tracking of RF data.
Because the tracking of RF data is sensitive to noise, a
smoothing filter must be applied before the strain calcu-
lation.

In recent years, novel lateral modulation methods !> for
high-spatial-resolution 2D displacement estimation have
been researched. At a high spatial resolution, strain
calculation is sensitive to noise. Conventional smoothing
filters suffer from a critical drawback: there is a trade-off
between spatial resolution and accuracy. To overcome this
problem, the previously proposed dynamic grid interpola-
tion'> has been extended so that the smoothing effect can be
adjusted adaptively; this method is called adaptive dynamic
grid interpolation (ADGI), and considers mechanical rela-
tionships in the imaging model. Conventional myocardial
TDI and SRI imaging systems seldom consider the my-
ocardial mechanical model, and cardiac motion analysis
methods seldom use high-accuracy displacement data. Our
proposed method combines the advantages of the two
methods, simultaneously achieving high spatial resolution
and accuracy. In our other study,'® this displacement-
smoothing filter is applied to tissue strain imaging, and the
results were promising.

Usually, when the scanning frame rate is high, the
correlation coefficient, which is calculated from autocorre-
lation or cross-correlation, will be high. However only using
the phase-shift data of two consecutive frames, the dynamic
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range of the displacements is low. Therefore, the strain
calculation will be affected by the high relative noise. In this
study, a Kalman filter (KF) is applied to position tracking by
which the displacement data of multiple frames can be
tracked in the temporal dimension, and the myocardial strain
is calculated from the accumulated displacement to improve
the accuracy. From the simulation results, we can conclude
that our method can provide more accurate myocardial strain
images.

The rest of this paper is organized as follows. First in §2
we present the principle of myocardial strain imaging. The
simulation models and numerical simulations are described
in §3. Then we discuss our overall findings in §4. Finally, the
conclusions of our work are provided in §5.

2. Myocardial Strain Imaging

In this method, a 2D array transducer acquires echo data
from the myocardium through volumetric sector scanning.
RF signals for each scan line are received at all elements in
the probe. The phase-shift at every measuring point between
two consecutive frames is calculated by the combined
autocorrelation method (CAM)'” or the extended CAM
(ECAM),'®!9 and the displacement vectors are calculated
by the weighted-phase gradient (WPG) method?*?! from the
obtained phase-shifts. Meanwhile, the myocardial endocar-
dium boundaries are segmented from the B-mode image, for
example, an automated segmentation method for the heart
wall?” has been proposed recently. The epicardium boun-
dary is calculated from the endocardium boundary by adding
a fixed radius. Next, the myocardium meshes are generated
from the myocardial boundaries. The detected displacement
vectors and myocardial meshes are then input into a
displacement-resampling module. The displacement vectors
in each mesh node are calculated by bilinear interpolation,>®
their coordinates are translated from Cartesian coordinates to
cylindrical coordinates, and ADGI is then used to fit the
displacement vectors. The position vectors of each node are
tracked by a KF, and then the displacement vectors are
accumulated. Finally, the strain tensors are calculated from
the processed displacement vectors.

2.1 Adaptive dynamic grid interpolation

Because of scattering, reflection, and the interference of
ultrasound beams in the tissue, there is a lot of noise in
ultrasound echo signals. Therefore, the raw signals are rarely
used directly in motion tracking. The most commonly used
smoothing filters for ultrasound imaging are the moving-
average and median filters. These two filters are simple and
easy to understand, and easily achieve real-time processing.
In myocardial strain imaging, calculating the spatial deriva-
tion of displacement is a necessary step in the strain
calculation, but this numerical calculation is extremely
sensitive to noise, especially when the spatial resolution
is high. To obtain high-accuracy and stable strain data,
smoothing filters must be applied before the strain calcu-
lation. In this situation, the above two filters have the
following limitations: (1) A trade-off between spatial
resolution and stability. If the window is large, the spatial
resolution decreases; if the window is small, the filters
cannot handle the speckle noise of a large area, and the
fluctuations in the strain images are large. (2) Because the

07HF25-2

window size is fixed, the smoothing effect is the same in all
positions, but the noise amplitude is not uniform. Therefore,
it is difficult to select a globally optimized window size. A
large window causes a loss of detailed information in
regions where the noise amplitude is small. If the window is
small, however, it is not stable in high-noise amplitude
regions. (3) The moving-average filter simply averages the
values of several adjacent nodes, and the smoothing effect is
not globally optimized. If the error at a position is large, the
values of all neighboring nodes are affected. Although the
median filter can remove this type of noise, unlike typical
image data, errors in ultrasonic data do not usually appear
only at one sampling node. Therefore, the effect of this filter
is limited. Under some conditions, even if the window is
extremely large, the smoothing effect is also not perfect. (4)
The smoothed data from these two filters do not always
follow the laws of physics.

The detailed process of ADGI is described as follows. The
first step is to create a mesh that represents the region of
interest (ROI). In our study, the endocardium boundary is
segmented, and the epicardium boundary is calculated from
the endocardium boundary by adding a fixed radius. Then
the myocardium is divided into quadrilateral elements in
the radial and circumferential directions. Virtual springs are
connected between adjacent nodes to restrict erroneous
motions. Finally, by combining the detected displacement
vectors and displacement-revising vectors, high-accurate and
high-spatial-resolution displacement vectors can be obtained.
An illustration of the mesh definition and displacement
vectors is shown in Fig. 1. In ADGI, the end point of the
detected displacement vector is not always located at a mesh
node. Therefore, the displacement vectors are resampled and
mesh nodes are generated by using bilinear interpolation.

In the following descriptions, the meanings of symbols are
listed below:

o i = (uy,u.): detected displacement vector.

e ¢ = (¢, €): displacement-revising vector which will be

determined by this method.

e i = (ul,u)): revised displacement vector.

e Subscripts r and c: denote radial direction component

and circumferential direction component, respectively.

Before deformation

Before deformation

After deformation,
detected displacement

Revised displacement

After deformation

Fig. 1. (Color online) lllustration of mesh definition in the ADGI method
and the displacement vectors.
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e m and n: node numbers in radial direction and
circumferential direction, respectively.
e j and i: node indices in radial direction and circum-
ferential direction, respectively.
The array of displacement vectors u which contains the
2D displacement vectors of m - n nodes is defined as

= =1, 1 =12 =1lm
u= [ u’, ey u N
=2,1 =22 =2.m
u 9 u b 9 u 9 (1)
=n,1 -n,2 =n,mqT
u,out, s U]

The array of revised displacement vectors is defined in the
same form as u, and its definition is

U =u+e (@)

where € is the array of displacement-revising vectors which
also contains the 2D displacement-revising vector of m - n
nodes. The array of displacement-revising vectors € has the
same definition form as eq. (1).

To obtain the displacement-revising vectors, an error
function, which represents a balance between the revising
effect and the compression or tension energy of the virtual
springs, is defined. In the following function, the meanings
of the parameters are listed below:

e E'J: pseudo elasticity parameter at node (i,j) that
controls the displacement-revising effect in the radial
direction.

e EJ: pseudo elasticity parameter at node (i,j) that
controls the displacement-revising effect in the circum-
ferential direction.

e G'J and G%/: pseudo shear-elasticity parameters at node
(i,j) that control the displacement-revising effects in
the shear direction.

The error function is defined as

elerne) =) Z[@?")Z + (i)

i=1 j=1

n m— 1
e
T iy
=1 j=1
n—1 m— 1
+ZZ rc [( li+1 D ’i+l,j)
U
i=1 j=1
(M lj+l /i,j)]z
-1 m i
+ZZ cc H—lj ’i,j)2
u,
i=1 j=1
n—1 m—1
+Z cr [( i41,j4+1 ’i,j+1)
U
i=1 j=1 2
il 2
— (Y —u ) (3)

When the error function is minimized, the displacement-
revising vectors € are considered to be optimal. By
calculating all the partial derivatives of eq. (3) with respect
to each element in €, and €., the following linear equations
are obtained:

The detailed derivation process of A;, b;, A., and b, is
described in the Appendix. The displacement-revising
vectors €, and €. are calculated by solving the above linear
eqgs. (4) and (5). Finally, the array of revised displacement
vectors is calculated by eq. (2).

The pseudo elasticity parameters E-/, E%/ and E-/ can be
determined by the cross-correlation coefficients between two
frame images pre- and post-deformation. This method is
usually applied to displacement measurement, for example,
STE. When the coefficients are high, the accuracy of the
estimated displacements will also be high. Therefore the
pseudo elasticity parameters can be mapped to high values
when the coefficients are low, and to low values when the
coefficients are high. The pseudo elasticity parameters can
also be determined from the displacement error functions,
which indicate the magnitude of the erroneous motion. The
displacement error functions are defined as

s T S T 6

= o+ ’ (©)

. utl — 2yt 4yt

8 = i,j i+1,j ’ (7)
he! + he

. AU R LN

=gy = ®

Here &, and h, are the distances between adjacent nodes in
the radial and circumferential directions, respectively. These
functions have a similar form to the discrete strain differ-
ence. If the difference is large, it means that the estimated
displacement has a large error. Here we assume there are no
rapid changes in the strain distribution. A simple way to map
the displacement error functions to the pseudo elasticity
parameters is to use linear functions, where the function
values are mapped to a range [E™", E™®] based on the above
displacement error functions. The definitions of the pseudo
elasticity parameter functions are:

i,j __ smin
81‘1‘ 81‘1‘

Ell}rj - Smax __ Smin (Efn:ax - Efn:in) + El“nflin; (9)
ITr T
i,j Sé’é — 52:3“ max min min .
cc = gmax _ amin( cc ECC )+Ecc ’ (10)
z J _ mm ) )
Orl = G g (R~ GEM+ G (1)
Ic
o i,j __ smin
Gl = o — g (OB = GEVH G, (1)
T
Here (Sm”‘ 621‘“, 8?;”‘, and 8?;“‘ are the detected minimal

values from the displacement error function. Furthermore,
SR, S0, 6%, and 6% are the detected maximum values
from the dlsplacement error function. In this study, the
optimized ranges of the pseudo elasticity parameters are
manually selected from preliminary experiments by select-
ing different minimal and maximum pseudo -elasticity
parameters to give a good balance between spatial resolution
and accuracy. In the preliminary experiments, different
pseudo elasticity parameters are tested for obtaining
smoothing effects. The minimal pseudo elasticity parameters

de(€;, €;)
% = A — b, =0, (4)  are selected by making the smoothing effect only just
de(e re ) observable, while the maximum pseudo elasticity parameters
e — Aec—b.=0. (5) are selected by increasing the smoothing effect up to the
dec point just before it becomes excessive. This method is used
07HF25-3 © 2010 The Japan Society of Applied Physics
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Fig. 2.
process flow.

(Color online) Displacement tracking and strain calculation

to determine the optimized pseudo elasticity parameter
ranges in this study. Illustrations of the procedure are shown
in §3.

In the current study, only the radial strain &, is assessed.
Therefore, only the radial displacement u, is smoothed. To
obtain a revised radial displacement u,, only eq. (4) is
solved. Because de(e;, €.)/0€; is only related to the param-
eters E,; and G, E.. and G, are neglected in this study.

2.2 Displacement tracking and strain calculation
Generally, the correlation coefficient will be high when the
scanning frame rate is high, and the accuracy of the
estimated displacement will also be high. However unfortu-
nately, the dynamic range of the displacement estimated
from two consecutive frames will be low. Therefore, the
strain calculation will be affected by the relatively high
noise. In order to overcome this problem, a fixed-interval
KF? is applied to position tracking, so that data from
multiple frames can be tracked in the temporal dimension.
The displacement data for each sampling node are first
smoothed by ADGI, and then tracked by the KF. After each
step, the positions of the grids are updated to estimate the
displacement in the next step. The processing flow is
illustrated in Fig. 2.

Displacement is generally defined by the difference
between the positions at time steps k and k — 1. The position
vector p is related to the displacement vector u as

Pr = Pr—1 + W1, (13)

where the subscript k£ denotes the vector at time step k. In
addition, the symbol x represents the internal state i.e. the
position state. The KF can be described by two equations,
the state equation and measurement equation as follows:

X = Xp—1 + Mgy,

Py = X; +my, (14)
where ny; is process noise and m; is measurement noise,
which are assumed to be independent, white, and with
normal probability distributions.

The KF provides the closed-form recursive solution for
the estimation of linear discrete-time dynamic systems,
which can be described by equations of the form eq. (14).
Detailed parameter estimation is discussed in refs. 24 and
25. Finally, the mean position vector Py, is estimated, and
then the accumulated strain data are calculated by?®

d(Pr — Po)»
or

where p, is the initial position and r is the displacement
component in radial direction.

Errk = , 5)
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Fig. 3. (Color online) lllustration of the measuring conditions (model 2),
scanning plane, and the path of the profile.

3. Simulation Analysis

3D myocardial strain-imaging performance is evaluated
by numerically simulating the short-axis imaging of a 3D
myocardial model, as illustrated in Fig. 3. A digital LV
phantom is used for generating the LV shape before and
after deformation. The endocardium radius is 11.25 mm and
the epicardium radius is 23 mm. The strain curve used in the
simulation is shown in Fig. 4(a), and the displacement curve
is shown in Fig. 4(b). The stiffness of the infarction is set to
be about three times that of the surrounding normal wall,
because this stiffness ratio is generally referred to as the
typical stiffness ratio of the infarction to the normal wall.”
To achieve a stiffness in the infarcted region three times that
in the normal region, the radial strain &, in the infarcted
region is set to be one-third of that in the normal region.

Applying these parameters of the simulation model to
each mesh node in the LV model, post deformation models
are constructed. In the normal wall, the radial strain is set to
be &, while in the infarcted wall the radial strain is set to be
¢/3. For each mesh node, the first step is detecting whether
or not the node is located in the infarcted region. After that,
the displacement vector is calculated using the determined
radial strain. In this simulation model, the radial displace-
ment in the infarcted wall is one-third of that in the normal
wall. By combining the original position with the calculated
displacement, the new position can be obtained. For the
profile in the circumferential direction, the strain distribu-
tion is approximately a square wave. The myocardium is
frequently considered an incompressible body, and myocar-
dial motion consists of displacements due to deformation
and translation.” Therefore, the positions of the scatterers
are relocated according to the post deformation results. Next,
the simulated RF signals are generated from the scatterer
field.

© 2010 The Japan Society of Applied Physics
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The external diameter of the 2D transducer is 20 mm.
The ultrasonic pulse has a center frequency of 3.75 MHz
and the fractional bandwidth is 40%. The scanning plane
is located midway between the apex and the base when
viewed from the short-axis. The scanning plane and
hypothetical infarction are illustrated in Fig. 3. The
scanning frame rate is 30 FPS. In these simulations,
RF signals with a signal-to-noise ratio (SNR) of 20dB
are digitized at a rate of 20 MHz. The moving-average-
filter window is W, = 3.5 mm, the same size as that used
in our previous studies.’’>” The numbers of elements in
the radial and circumferential directions are 80 and 256,
respectively. The optimized pseudo elasticity parameters
are set in the range of 20 to 2800 in the radial direction
and 20 to 800 in the shear direction from the results
of preliminary experiments as mentioned in §2.1. The
optimized pseudo elasticity parameter ranges are deter-
mined by using the data for one frame generated from
the same simulation model. The images and profiles
illustrating the selection of the minimum and maximum
pseudo elasticity parameters are shown in Fig. 5. In the
preliminary experiments, the radial strain is set to be
4%, which is the averaged strain value between frames 1
and 9. Figure 5(a) is the resulting image obtained using
the optimized pseudo elasticity parameter ranges, (b) is
the resulting image when the smoothing effect is
insufficient, (c) is the resulting image when the smooth-
ing effect is excessive, and (d) shows the profiles of
figures (a)—(c).

To evaluate angle dependence of the proposed method,
two models with different infarction positions are simulated.
In model 1, the infarcted wall is located at approximately
5 to 7 o’clock, where its radial motion and that of the
ultrasound beam are identical. Under this condition, the

07HF25-5

Time (second)

(b)

(Color online) (a) Radial strain curve and (b) radial displacement curve of a cardiac cycle.

motion of the abnormal wall can be detected by both TDI
and SRI. In model 2, the infarcted wall is located at
approximately 1 to 3 o’clock. Neither TDI nor SRI can
accurately detect the wall motion in this region.'™

The resulting images obtained from model 1 are shown in
Fig. 6. Figures 6(al)-6(a5) show the radial strain generated
by using the moving average filter at frames 1, 3, 5, 7, and
9, respectively. Figures 6(b1)-6(b5) show the radial strain
generated by the proposed method at frames 1, 3, 5, 7, and 9,
respectively. Figures 6(c1)-6(c5) show the radial strain
generated by the proposed method without adding noise at
frames 1, 3, 5, 7, and 9, respectively. The radial strain
profiles are shown in Fig. 6(d). The corresponding results for
model 2 are shown in Fig. 7.

From the resulting images, we can see that our proposed
method does not have the problem of angle dependence.
There are no instances of a distinct decrease in accuracy in
model 2 in contrast with model 1. In both models, although
the noise level is high, the strain data calculated from the
accumulated displacement have better accuracy and stabil-

1ty.
4. Discussion

For ultrasound myocardial strain imaging, the angle depend-
ence and strain calculation are two major problems that have
still not been resolved perfectly. Angle dependence is
limited by the nature of ultrasound. Using our previously
proposed WPG method, full displacement vectors can be
detected with a 2D array transducer. The problem of strain
calculation is caused by the amplification of displacement
noise in strain images. A novel displacement-fitting method,
ADGTI has been proposed for overcoming these problems.
With the adaptive pseudo elasticity parameter selection, the
fitting or smoothing effect can be adjusted automatically,

© 2010 The Japan Society of Applied Physics
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(d)

(Color online) Images and profiles of radial strain used for determining the ranges of pseudo elasticity parameters: (a) E =20-2800,

G =20-800; (b) E=1, G=1, (c) E=3000, G =1000, and (d) profiles corresponding to minimum and maximum parameters. The length unit in the

above figures is cm.

obtaining better smoothing performance. By tracking my-
ocardial motion and calculating the strain from the accu-
mulated displacement, the accuracy and stability can be
further improved.

In the strain calculation, because the adjacent sampling
node distance is typically small and the differential operator
is extremely sensitive to noise, a small fluctuation in
displacement can produce a larger fluctuation in the result
for strain. This problem can be approximately resolved by
increasing the step size in the calculation of displacement
differential, but this produces low spatial resolution in the
strain images. The proposed ADGI method does not include
the concept of window size; the smoothing is performed by
solving a global error function to find the displacement-
revising vectors. If the noise level is high in some region, the
pseudo elasticity parameters are set to be large; in addition,
the virtual springs pull the node back. In the error function,
the first term represents the revising effect, and the second
term represents the compression or tension energy of the
virtual springs. If the overall revising effect is large, the
compression or tension energy of virtual springs will be
small. On the other hand, if the overall revising effect is
small, the displacements among the nodes are disordered,
and the compression or tension energy of the virtual springs
is large. When the error function is minimized, the revising
effect and compression or tension energy of the virtual
springs is balanced. The pseudo elasticity parameters control
the balance between these two items. When the pseudo
elasticity parameters are large, the virtual spring is stiff,
greatly restricting erroneous motion. If the noise level in a
region is small, the pseudo elasticity parameters can be set to
small values; consequently, the virtual spring is soft and the
smoothing effect is small. Therefore, the smoothing effect
is globally optimized, and a good balance between spatial
resolution and accuracy can be achieved. Unlike the median

07HF25-6

and moving-average filters, there are mechanical consider-
ations in this method; thus, the fitting results are more
meaningful.

Although the proposed method can output better results, it
also has a drawback: the processing is complex and a large
amount of computational resources is needed. The complex-
ity of ADGI is O[(nm)®], where n and m denote the mesh
sizes. If the window sizes are w; and w;, the complexity of
the moving average filter is O(nmw;w,), and the complexity
of the median filter is O[nmw;w, log(w;w,)]. The compu-
tation time is greatly increased with increasing mesh sizes.
This problem can be resolved by dividing the mesh into
several overlapping meshes. However with the rapid devel-
opment of computer hardware, this problem is not critical.

The ranges of the optimized pseudo elasticity parameters
are manually selected in this study. However in real
measurement environments, it is difficult to obtain real
strain data. In addition, differences in the mesh size, the
distance between adjacent nodes, the amplitude of displace-
ment, and the noise level will affect the parameter selection.
For a different model, the optimized pseudo -elasticity
parameters ranges will be different. Therefore a more
reliable parameter selection method is important and will
be researched in a future study.

In the error function defined as eq. (3), the differences of
myocardial stiffness at different positions are not considered.
However, the contraction of a normal wall is usually larger
than that of an abnormal wall. Therefore, using the same
pseudo elasticity parameter ranges adjusted for a normal
wall, the fitting in the abnormal wall may be excessive in
some cases. In this study, to simplify the implementation,
this effect is neglected. In a future work, the stiffness of the
myocardium itself will be considered, and iterative process-
ing will be used to obtain a better fitting result for the whole
area of the myocardium.

© 2010 The Japan Society of Applied Physics
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Fig. 6. (Color online) Resulting images and profiles of radial stain for model 1: (a1) frame 1, normal smoothing, (a2) frame 3, normal smoothing,
(a3) frame 5, normal smoothing, (a4) frame 7, normal smoothing, (a5) frame 9, normal smoothing, (b1) frame 1, ADGI+KF, (b2) frame 3, ADGI+KF,
(b3) frame 5, ADGI+KF, (b4) frame 7, ADGI+KF, (b5) frame 9, ADGI+KF, (c1) frame 1, ADGI+KF, noiseless, (c2) frame 3, ADGI+KF, noiseless,
(c3) frame 5, ADGI+KF, noiseless, (c4) frame 7, ADGI+KF, noiseless, (c5) frame 9, ADGI+KF, noiseless, and (d) profiles, frame 9. The length unit
is cm.
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Fig. 7. (Color online) Resulting images and profiles of radial strain for model 2: (a1) frame 1, normal smoothing, (a2) frame 3, normal smoothing,
(a3) frame 5, normal smoothing, (a4) frame 7, normal smoothing, (a5) frame 9, normal smoothing, (b1) frame 1, ADGI+KF, (b2) frame 3, ADGI+KF,
(b3) frame 5, ADGI+KF, (b4) frame 7, ADGI+KF, (b5) frame 9, ADGI+KF, (c1) frame 1, ADGI+KF, noiseless, (c2) frame 3, ADGI+KF, noiseless,
(c3) frame 5, ADGI+KF, noiseless, (c4) frame 7, ADGI+KF, noiseless, (c5) frame 9, ADGI+KF, noiseless, and (d) profiles, frame 9. The length unit
is cm.
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5. Conclusions

In this paper, a novel displacement-fitting method ADGI is
presented. Because its fitting or smoothing effect can be
automatically adjusted on the basis of the noise level, it
provides stable and accurate myocardial strain images with
high spatial resolution. By utilizing myocardial motion
tracking and calculating the strain from the accumulated
displacement, further improvements are also obtained. From
the simulation results, we can conclude that the images
generated by the proposed method are accurate, robust, and
have high spatial resolution. Therefore, the proposed method
is expected to provide more accurate diagnostic information.
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Appendix: Matrix Definition and Implementation

In the implementation, a matrix form is used. Herein, the 2D index (i, j) in eq. (3) is converted to the 1D index (i — 1)m + j.
Substituting eq. (2) into eq. (3), and then expanding it, the following formula is obtained:
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When the error function is minimized, the displacement-revising vectors € are considered to be optimal. In order to obtain
the displacement-revising vectors, the partial derivatives of eq. (A-1) with respect to each element in €, and €. are calculated.
For example, at node (i, j) the equation that contains the partial derivative de(e;, €.)/del=D"/ is
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Rearranging and sorting the above equation, the following simplified equation can be obtained:
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In this equation, the left part contains the elements of matrix A; in the [(i — 1)m + j]-th row. The column indices of the
elementsare: ( —2m+j—1,(—2m~+j,(—2m+j+1,(—Dm+j—1,(—Dm+j,(i—Dm+j+1,im+j—1,
im+ j, and im 4 j + 1. The right part of (A-3) is the corresponding element of array b, in the same row. After calculating the
partial derivatives of all m - n nodes, the sparse matrix A, and array b; can be determined. In the same way, matrix A, and

array b, can also be determined. The linear equations given by eqs. (4) and (5) can be solved by using QR factorization.?®
Because the number of linear equations is very large, LAPACK?” is used for solving them.
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