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Abstract—Online medical diagnosis is an emerging type of 

medical services, also it is a new kind of service for electronic 

commerce. Photoacoustic tomography is a promising imaging 

modality that can provide high contrast and spatial-resolution 

images of light-absorption distribution in tissue. This paper 

presents novel matrix compression methods for reducing 

required memory and accelerating reconstruction speed for 

model-based reconstruction. In addition, we integrated the 

compressed sensing into our proposed reconstruction method 

for solving the optimization problem. The results of phantom 

experiment indicate that the proposed method provides a faster 

and high quality reconstruction with less memory consumption. 

Therefore, it makes the photoacoustic tomography suitable for 

online or remote medical diagnosis. 

 
Index Terms—Biomedical imaging, reconstruction 

algorithms, computed tomography, compressed sensing. 

I. INTRODUCTION 

With the rapid development of computer, network, and 

biomedical technology, online or remote medical diagnosis 

becomes an emerging type of medical service, which is a 

novel kind of service for electronic commerce. Photoacoustic 

imaging is a promising image modality which can provide 

early detection of cancer especially breast cancer. Worldwide, 

breast cancer comprises 22.9 % of all cancers in women. In 

2008, breast cancer caused 458,503 deaths worldwide. 

Therefore, better online or remote diagnosis will improve the 

quality of life, and also it is a big market for electronic 

commerce. In photoacoustic tomography (PAT) [1], by 

illuminating a target with a short pulse laser, stress waves are 

produced due to the thermoelastic expansion. Acoustic 

sensors are placed at surrounding positions to detect PA 

signals, and then the absorption source is recovered from the 

detected PA signals through a reconstruction algorithm. 

Because light energy is converted to ultrasound which has 

much less absorption and scattering than light, PAT has much 

better spatial resolution than traditional optical modalities at 

depths exceeding the optical ballistic regime.  
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Reconstruction algorithms for PAT have been extensively 

studied in recent decades [1]. The simplest reconstruction 

method is delay and sum (DAS) [2]. Filtered back-projection 

(FBP) method [3] is a common tomography reconstruction 

method which can also be applied to PAT. Besides the 

approximation methods, analytic reconstruction methods with 

fewer assumptions have been proposed to obtain exact 

reconstruction, for example, universal back-projection (UBP) 

method [4] and Fourier domain reconstruction method [5]. 

The above reconstruction methods require enclosed detection 

for circular scanning or an unbounded open surface for planar 

scanning, which are generally difficult to implement in a 

clinical situation. To overcome the limited-view problem, 

model-based reconstruction methods [6]–[12] (also called 

iterative reconstruction methods) have been investigated. In 

these methods, the inverse problem is converted into solving 

an optimization problem by minimizing the error between 

detected PA signals and calculated signals from a forward 

model. Although this type of methods needs more 

computation, it needs fewer detecting sensors and thus less 

acquisition time. It is also able to model non-ideal physical 

conditions and measurement environments. Therefore, the 

degradation of reconstructed images caused by acoustic 

inhomogeneity and attenuation can be resolved. Generally, 

model-based reconstruction requires a large amount of 

memory and a long calculation time.  

In order to overcome limitations of model-based 

reconstruction, we propose novel matrix compression 

methods to reduce the required memory of system matrix. By 

utilizing these methods, the matrix can be compressed to 

1/250 its size; hence, the proposed reconstruction method can 

be implemented with a conventional computer at a high speed. 

Conjugate gradient method is a popular method for solving 

the optimization problem in model-based reconstruction, 

however, in some cases this method converges to local 

minima. In addition, reconstructed images usually is sparse, 

the compressed sensing method can reconstruct better images 

when using less scanned data. In order to resolve the problem 

and improve the quality of reconstruction, we integrated the 

compressed sensing reconstruction to our proposed method. 

II. RECONSTRUCTION METHOD AND MATRIX COMPRESSION 

A PA wave generated in an acoustically homogenous and 

non-viscous medium can be described as [13] 
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where p(r,t) is pressure, H(r,t) is a heating function defined as 

the thermal energy converted, Cp is the isobaric specific heat, 

β is the coefficient of isobaric volume expansion, and vs is 

acoustic speed. Under the conditions of both thermal and 

stress confinement, the heating time can be treated as a delta 

function, such as )(),(),( ttrAtrH  , where A(r,t) 

denotes absorbed energy. Wave equation (1) can be solved by 

using a Green function approach [1], and the solution is 
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The above equation describes a relationship in which the 

detected PA pressure at position r and time t comes from 

sources over a spherical surface centered at r with a radius of 

|r-r'|. Based on the equation (2), the forward model for 

calculating PA signals can be expressed in a matrix form as 

p H F , (3) 

where H denotes the system matrix representing the 

geometric relationship between the initial pressure and the 

detected PA signals, f represents absorbed energy, and p 

denotes the detected PA signals. 

Although model-based reconstruction for PAT has many 

advantages, it has a critical limitation that the system matrix 

consumes huge amounts of memory without matrix 

compression. In order to apply the model-based 

reconstruction method to clinical situations, we researched 

matrix-compression methods to reduce the memory 

requirement. First, matrix H is a sparse matrix in which more 

than 99% of the entries are zero. The required memory can be 

greatly reduced by using the compressed sparse row (CSR) 

format, where non-zero entries are stored in continuous 

memory locations and corresponding column indices are 

stored in an integer array. We use another integer array to 

store the index of first non-zero entry in each row. 

In PAT, the ultrasound transducer is generally assumed to 

detect pressure waves in directions from 0 to 90 degrees with 

the same sensitivity, however, in real situations the sensitivity 

is not uniform due to the finite-sized unfocused transducer. 

The spatial impulse response of the transducer introduces 

limited detection angles, waveform distortion, and time-delay 

errors for reconstruction. For example, the angular sensitivity 

of a 2x2 mm
2
 unfocused rectangular transducer is plotted in 

Fig. 1(a). When the incident angle is 45 degrees, the 

sensitivity is -50dB, which is less than the detectable signal 

level for a conventional sensor. Hence, the incident wave can 

be ignored. In order to compress the matrix H, if the incident 

angle exceeds a given threshold, its value is set to zero so that 

the entry is not stored. With this approach, matrix H can be 

further decreased to about half its original size when the 

threshold value is 45 degrees.  

The matrix can be further compressed to one-fourth its 

original size based on the symmetry of wave propagation 

[10], as illustrated in Fig. 1(b). This figure depicts only four 

sensors and eight voxels. The PA signals detected by sensor 1 

are calculated from the inner product H(1,:)f. Because sensors 

2 and 1 are symmetrical about the Y axis, the second row of H 

can be obtained by changing the X-axis order of the first row. 

Similarly, the third row of H can be obtained by changing the 

Y-axis order of the first row, and the fourth row of H can be 

obtained by changing the X- and Y-axis orders of the first 

row. Therefore, only one-fourth of the rows of H are 

necessary for reconstruction, and other rows' data can be 

obtained during the multiplication of sparse matrix and 

vector. In total, the required memory can be reduced to 

approximately 1/250 its original size by using the above 

methods.  

 
Fig. 1.  Matrix compression methods. (a) Angular sensitivity of a 2x2 mm2 

unfocused rectangular transducer. The distance between transducer and 

target is L=10 mm. The horizontal axis represents the wave incident angle θ
(in degree), and the vertical axis represents the sensitivity of the transducer. 

The DREAM toolbox [14] was used to calculate the result. (b) Matrix 

compression method using the symmetry of wave propagation.  For 

simplicity, in this figure only four sensors and eight voxels are illustrated. 

Only the first 1/4 row of H is stored; coefficients in other rows can be 

obtained by rearranging the order of the first 1/4 row's coefficients. 

In the system matrix m xn
H R , usually the number of 

scanned data m is not large enough compared to the number of 

voexl n, simple least-squares method leads to 

under-determinate. In order to overcome the problem, 

Tikhonov regularization can be applied. However, this 

method does not consider the sparseness of the imaging 

objects. The compressed sensing theory provides a better 

solution which can eliminate under-determinate by 

incorporating sparsity constraints. In the CC method, the 

image is projected onto an appropriate basis set W, such as 

discrete cosine transformation (DCT) or wavelet basis. And 

therefore, the reconstruction of image f is obtained by solving 

the following constrained optimization problem 

*

2
1 *

2 1

m in *

f




 p H W f f , (4) 

where f*=Wf denote the coefficients of image data f. In this 
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research we adopt l1-regularized least squares [15] to solve 

the convex optimization problem. The optimized 

regularization parameter   is initialized set to 0.05, and 

optimally updated by the method Guo et al., [16] proposed.
 

 
Fig. 2.  Configuration of phantom in experiment. 

 
Fig 3.  Experiment setup. 

III. PHANTOM EXPERIMENTS 

Performances were evaluated by a experiment which used a 

tissue-mimicking phantom with embedded absorbers as 

illustrated in Fig. 2. The base of the tissue-mimicking 

phantom with a size of 40 (X) x 40 (Y) x 50 (Z) mm
3
 was 

made with urethane gel and curing agent. The speed of sound 

in the base phantom was 1391 m/s. Rubber wires with 0.3 mm 

diameter were embedded in the base phantom. The 

experiment setup is shown in Fig. 3. A Q-switched Nd:YAG 

laser at 1064 nm was used to illuminate the object. The laser 

has a PRF of 10 Hz and pulse duration of 10 ns. A hydrophone 

with 2 mm diameter performed 2-D plan raster scan to acquire 

PA signals. The PA signals were digitalized at 25 MHz and 

then stored in a computer. There are 20 raster scans for the x 

and y axes. The pitch is 2 mm, and the ranges of 

reconstruction are 40 mm for the x and y axis, and 50 mm for 

the z axis. The voxel size is 0.5 mm for all axes.  

All programs were implemented in parallel and run on a 

cluster system containing six workstations. Each workstation 

had two quad-core Xeon 2.4GHz CPUs. The floating point 

operation per second (FLOPS) of the cluster system was 251 

G. After the simulated PA signals were obtained, the 

reconstruction program was used to reconstruct the 

absorption distribution. The required memory for the matrix 

H before compression was 1.043 TB; after compression the 

size was reduced to 3.250 GB. The calculation time for one 

iteration was 0.9 seconds, and there were 50 iterations in total.  

 
Fig. 4.  Results of image reconstructed from experiment data. (a) images 

reconstructed by the UBP method. (b) images reconstructed by the proposed 

method. 

Fig. 4 presents the maximum intensity projection (MIP) 

images reconstructed by the proposed method, compared with 

the conventional UBP method. Here, MIP X-Y is the 

projection along the Z axis, MIP X-Z is the projection along 

the Y axis, and MIP Z-Y is the projection along the X axis. 

Fig. 4(a) present MIP images reconstructed by the UBP 

method. The MIP images reconstructed by the proposed 

method are presented in Figs. 4(b). The resulting images 

indicate that the absorption distribution reconstructed using 

the proposed method is better than that using the UBP 

method. Noise and artifacts were produced in the UBP 

reconstruction. In contrast, these were greatly reduced by the 

proposed method. The amount of required memory was 

greatly reduced due to the proposed matrix compression 

methods. In addition, because imaging object sparse 

constraint was considered and l1-regularized least squares was 

adopted for solving the optimization problem, better image 

quality is achieved. 

IV. CONCLUSIONS 

In this paper, we presented novel system matrix 

compression methods for 3-D planar PAT model-based 

reconstruction. Matrix compression methods made the 

proposed method applicable to 3-D reconstruction under 

planar measurement conditions, and the calculation speed was 
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also accelerated. In addition, the quality of reconstructed 

image had significant improvement due to the integrating the 

compressed sensing method. The phantom experiment results 

indicated that the proposed method reconstructs better quality 

images with a high speed and less memory requirement. We 

expect that the proposed method will benefit the development 

of PAT for clinical diagnosis which could provide a new type 

of service for electronic commerce. 
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