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Abstract 

 
In this paper, we present a novel semi-supervised 
strategy for machine fault diagnosis. In the proposed 
method, we select parzen window as the generative 
classifier and Gentleboost as the discriminative 
classifier. Compared with SVM, boosting method has 
a very interesting property of relative immunity to 
overfitting. In addition, we propose a novel adaptive 
parzen window algorithm. It employs variational 
adaptive parzen window rather than a global 
optimized and fixed window, therefore, more accurate 
density estimates can be obtained. In experiments, 
artificial and machine vibration data are used to 
compare with other algorithms. Our proposed 
algorithm achieves stronger robustness and lower 
classification error rate. 
. 
1. Introduction 
 
   Recently, Neural network and SVM have been 
widely applied in the field of intelligent fault diagnosis 
[2, 3]. Traditional pattern recognition methods such as 
supervised learning methods utilize labeled samples 
for training. However, selecting the labeled samples is 
a time consuming task.  
   The methods using both labeled and unlabeled data 
to train classification model are called semi-supervised 
learning [6, 9, 11]. Self-training is a classical semi-
supervised learning method [12] . A classifier is firstly 
trained with the labeled data, and then the 
classification model is used to classify the unlabeled 
data. Thus, the unlabeled samples, which are classified 
with most confident scores, are incrementally added to 
the training set with their predicted labels until 
convergence is reached. However, this semi-
supervised training algorithm has a limitation that it 
does not give good results only using discriminative 
classifiers.  Because the samples could be classified in 
the wrong class with high confident scores, and 
consequently led to low classification accuracy. In 
order to overcome the problem, a Help-training 
method [1] has been proposed. In the method, a 

generative model, which does not focus only on the 
boundary between classes, is adopted to help 
discriminative classifier makes better decisions during 
the self-labeling process. 
     In this study, we propose a novel Help-train 
algorithm named Semi-Supervised Adaptive Parzen 
Gentleboost (SSAPG), which can achieve more robust 
and accurate classification results. In the proposed 
method, an adaptive parzen window method which can 
estimate accurate density estimates is used as 
generative model, and a Gentleboost method is used as 
discriminative classifier which can immunity to 
overfitting [5]. From the simulation and experiments 
data, we can conclude that proposed method 
outperform conventional methods.  
    The rest of this paper is organized as follows. In 
section 2, we describe Semi-Supervised Adaptive 
Parzen Gentleboost algorithm (SSAPG). The 
experimental results on both artificial and machine 
vibration  data are given in section 3. We conclude our 
work in section 4. 
 
2. Semi-Supervised Adaptive Parzen  
Gentleboost algorithm 
 
   We briefly describe Help-Train algorithm [1]. Let us 
consider the main classifier C which is based on a 
discriminative approach, and the classifier G based on 
a generative model. The classifier G produces a 
probability density model, and it is used to select 
samples which have a high probability to belong to a 
class. These selected samples constitute the candidate 
samples for labeling process. The classifier C then 
classifies the pre-selected samples, and those that are 
classified with most confident scores are added to the 
training set. The process is repeated until all unlabeled 
data are labeled. The detailed description of classifiers 
C and G are introduced in the next sub-sections. 
 
2.1.Supervised Gentleboost (SG) 
   Comparing with SVM, boosting method only 
requires adjusting the number of cycles to control the 
training accuracy. In addition, the most interesting 
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property of boosting is its relative immunity to 
overfitting [5]. In this study, we adopt Gentleboost 
algorithm as the main classifier which has better 
performance and faster data detection than Adaboost 
algorithm [4]. Like SVM [1], the magnitude of the 
margin can be interpreted as a measure of confidence 
about the decision of the classifier with respect to a 
sample. In Adaboost, the margin of a training example 
with respect to a classifier is defined as: 
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In Gentleboost, the parameter mα ≡ 1. The margin lies 
in the interval [-1, 1] and is positive if and only if the 
respective pattern is classified correctly [5, 7].   

 
2.2. Adaptive parzen window 
   In this section, we present the proposed adaptive 
method which can improve the non-parametric 
technique performance in probability density 
estimation by the sparseness degree relationship, It is 
applied into a Help-training framework. The 
probability densities of two classes are defined as: 
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where l is the number of samples, and kp is the parzen 
kernel function. we choose Gaussian kernel function 
as follows: 
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where h is the bandwidth, and  m is the dimension.   
   We estimate the sparseness degree around a sample 
based on its distance to its neighbors. The bandwidth 
adaptation method is as follows: First, a global optimal 
fixed bandwidth h is decided [8]. Second, adjust the 
variable bandwidth hi around h and let them be 
proportional to the sparseness degrees of their nearby 
regions. Ni denotes the set of neighbors of xi, k is the 
number of classes.  
   First, the mean square of local bandwidth hi is equal 
to square of global optimized bandwidth h.  
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For two samples xi and xj in the same set, according to 
the sparseness degree relationship, the local 
bandwidths are defined as: 
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where c1 and c2 are constant weight coefficients. If the 
c1=c2, we can compute the proportion relationship 
between hi  and  hj. 
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In order to obtain the variable bandwidth hi, the 
numerator term is kept unchanged and let the 
denominator accumulate in eq. (7). And then, adopting 
the eq.(4), the  variable bandwidth hi can be derived as: 
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Finally, the adaptive Gaussian kernel can be computed 
as follows:         
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2.3. Proposed algorithm 
   The proposed algorithm (SSAPG) utilizes the 
supervised Gentleboost as discriminative classifier and 
adaptive parzen window as generative model. The 
flow of the proposed algorithm is provided in Table 1. 
In the algorithm, a0 is the initial threshold for selecting 
most confident unlabeled samples. 

Table 1. Proposed algorithm (SSAPG) 
Input L=labeled samples, U=unlabeled samples  
Output Parameters of Gentleboost 
 
-Initialize the working set W=L and a=a0 
While U≠Φ do 

-Train Gentleboost with the working set W 
-Estimate the probability density model 

adaptive parzen+ for positive samples in W 
and estimate the probability density model 
adaptive parzen- for negative samples in W 

-Select n1 samples from U with high probability 
according to adaptive parzen+ and select n2 
samples from U with high probability 
according to adaptive parzen- 

-Compute the output of the gentleboost for the 
selected (n1+n2) samples 

-Constitute the set S formed by the samples 
whose output are most confident, f(x)>=a 

-Update the working set W W ∪  S 
-Update the unlabeled set U U-S 
-Reduce the value of a if S=Φ 

End while  
-Return the final parameters of the Gentleboost  
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3. Experiments 
 
   In order to evaluate the performance of the proposed 
methods, we performed  experiments for two different 
classification tasks, including: (1) Two moons data 
problem, (2) CWRU bearing test data [13].  
 
3.1. Performance evaluation  
   In this section, the proposed method was tested on 
the Two Moons data set as shown in Figure. 1, which 
is a standard benchmark for the semi-supervised 
learning algorithms used in the literature [1]. In each 
class, we randomly selected one point to form the 
labeled data and the remaining data served for 
unlabeled samples. The task is to predict the class for 
the unlabeled samples. In this experiment, we 
compared our algorithm with the results of ∇ S3VM 
(deltaS3VM), cS3VM, DA, TSVM/SVMlight, Self-
Training SVM (STSVM) [10] , Help-Train SVM 
(HTSVM) [1] in same condition. For this synthetic 
problem we used Gaussian kernel with same hyper-
parameters h=0.5 same as in [10], and the a0=0.9.  
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Figure 1. Illustration of two moons problem 
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Figure 2.Test error rate on the Two Moons dataset 

 
   In Figure 2, it appears clearly that SSAPG performs 
better than STSVM and HTSVM. In addition, we note 
that our method has lower test error compared with 
other algorithms. 
 
3.2. Fault diagnosis  
   In this experiment, we adopted the experiment data 
provided by CWRU bearing test data center [13]. The 
ball bearings used in the experiment were installed in a 
motor driven mechanical system. Single point faults 
with a diameter of 0.007 inches were introduced 
separately at inner race, ball, and outer race of the 
drive-end bearings using electro-discharge machining. 

The motor has a fixed speed of 1772 rpm is employed 
during the experiment. The bearing vibration signals 
of four bearing conditions were captured, including 
normal condition and three fault conditions with a 
sampling frequency of 12kHz. In each condition, 228 
samples were captured, and five statistical 
characteristics were extracted (mean, standard, 
variance, skewness, kurtosis). Each class takes 28 
labeled samples and 100 unlabeled samples as training 
set. Remaining 100 samples compose a test set in each 
class. 
   Firstly, the proposed method is compared with the 
SG algorithm in the training accuracy using the 
training set.  Figures 3-5 present the training error rate 
with the number of repeat for outer, inner and balling 
fault classification.  

 

               
Figure 3. Outer fault training error rate under the number 
of repeat 

                
Figure 4. Inner fault training error rate under the number  
of repeat 

               
Figure 5. Ball fault training error rate under the number of 
repeat 
 
  Secondly, the proposed algorithm is compared with 
the SG algorithm in test accuracy with the increase the 
different ratio of labeled data. In Figures 6-8, each 
presents the classification error with different number 
of labeled samples. Figure 6 depicts the results of 
outer fault classification, Figure 7 depicts the inner 
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fault classification, and Figure 8 depicts the balling 
fault classification.  

            
10% 20% 30% 50% 70% 90%

0

10

20

30

40

50

60

70

80

number of the labeled examples

te
st

 e
rr

or
 (%

)

 

 
       SG

    SSAPG

 
Figure 6. Test error of SSAPG algorithms with respect to 
the outer fault with different number of labeled samples. 
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Figure 7. Test error of SSAPG algorithms with respect to 
the inner fault of number of labeled samples 
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Figure 8. Test error of SSAPG algorithms with respect to 
the balling fault of number of labeled samples 
 
    From the results, we conclude that the test error 
rates obtained from the proposed method are smaller, 
and it less depended on the number of labeled samples 
in the training set. Thus, the proposed method is 
superior, and also makes the resulting classifier more 
robust. 

 
4. Conclusion 
 
    A novel semi-supervised pattern recognition method 
(SSAPG) is proposed in this research. An adaptive 
parzen window is proposed for achieving better 
density estimates. In addition, we select Gentleboost 
as the discriminative classifier to overcome the 
overfitting problem. We evaluate the proposed 
algorithm on artificial data, and the results indicated 
that our algorithm performs better than other methods. 
Our method is also applied to fault diagnosis and 
compared with SG, the experiment results indicate that 

proposed method achieves better accuracy and 
robustness.  
   In the future work, we plan to use other generative 
models instead of parzen windows in order to improve 
the efficiency during the training process.  
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