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Figure 1: Six groups of scene update results, and comparison between original 3D scene (left) and automatically updated 3D scene (right) by

capturing RGBD image (middle) with local variation. The objects in green are seen as static reference, relative to moved objects in other colors.

Abstract
Since indoor scenes are frequently changed in daily life, such as re-layout of furniture, the 3D reconstructions
for them should be flexible and easy to update. We present an automatic 3D scene update algorithm to indoor
scenes by capturing scene variation with RGBD cameras. We assume an initial scene has been reconstructed in
advance in manual or other semi-automatic way before the change, and automatically update the reconstruction
according to the newly captured RGBD images of the real scene update. It starts with an automatic segmentation
process without manual interaction, which benefits from accurate labeling training from the initial 3D scene. After
the segmentation, objects captured by RGBD camera are extracted to form a local updated scene. We formulate
an optimization problem to compare to the initial scene to locate moved objects. The moved objects are then
integrated with static objects in the initial scene to generate a new 3D scene. We demonstrate the efficiency and
robustness of our approach by updating the 3D scene of several real-world scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—

1. Introduction

In recent years, 3D scene modeling has been a hot research

topic in computer graphics, which aims to simultaneously

model single objects and the spatial layout between them in

a scene. Its recent research includes sketch based scene mod-

eling, inference based scene modeling, and scene reconstruc-

tion with RGBD cameras [SXZ∗12] [NXS12]. Although

such methods can reconstruct a static scene in 3D efficiently,

it is still of heavy computational and interactive loads to ap-

ply them to a scene updated frequently. For instance, furni-

ture in an indoor scene may be moved frequently, e.g. chairs,

and it is tedious to apply the methods above to reconstruct a
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Figure 2: Flowchart of our algorithm.

3D scene from scratch. Thus, it is desirable to have such a

solution make a reconstructed 3D indoor scene updated ac-

cording to the change of its real scene.

In this paper, we propose a fully automatic modeling so-

lution to scene update, which attempts to generate a new

3D scene by means of capturing local scene variation with

an RGBD camera. We assume that a complete indoor scene

has been scanned by a RGBD camera before its change. Its

RGBD images are segmented into semantic regions manu-

ally or semi-automatically with user-guided interactive algo-

rithm, and its 3D scene has been modeled according to the

segmentation, which contains 3D mesh objects such as many

pieces of furniture [SXZ∗12]. In practice, such an interac-

tive algorithm requires users to make a number of strokes

unceasingly so as to adjust semantic segmentation until it

reaches a satisfactory effect. The whole process takes a long

time and it is time consuming for common consumers to use

this tool to reconstruct a 3D scene even there are only minor

changes of the scene.

Our approach only requires the user to take RGBD im-

ages of changed scene to update an already reconstructed

3D scene. The RGBD image is first automatically segmented

into superpixels, which are labeled based on reconstructed

scene information after recognizing wall and floor and spa-

tial continuity check. After obtaining the changed scene with

extracted 3D objects, we formulate an optimization problem

for comparison between the changed scene and the original

scene to automatically determine moved objects and their

new positions and orientations in the updated scene. Fig. 2

illustrates the pipeline of our approach.

The key technical challenge in our approach is how to de-

termine where the scene updating occurs. Because the orig-

inal scene and new partial scene are captured in different

global coordinates, we first find one or more static objects

in two scenes as common reference. Rotating and translat-

ing them can make new partial scene register to the original

complete scene. When two scenes align, moved objects are

automatically placed in the new positions and orientations

according to the relative relation to static objects kept in the

scanned scene. In order to build right correspondences be-

tween static objects, we match two scenes and formulate an

objective function, which is maximized only when all the

static objects rightly overlap with each other in two differ-

ent scenes. Each static or moved object in partial scene is re-

placed with its matching 3D model in the original scene, and

the 3D scene update is accomplished. Therefore, our work

supports the movement or removal of objects in the origi-

nal scene, but does not support adding new object into the

original scene.

Contributions. We have implemented the whole model-

ing pipeline for scene update in a prototyping system and

demonstrated its usefulness with several real-world scenes.

Our approach is made possible with the following two tech-

nical contributions:

1. An optimization problem for scene comparison and up-

date is proposed. Given candidate object pairs between

the original scene and changed local scene captured with

RGBD camera, our method considers both similarity

term and geometric consistency term to optimize an ob-

jective function. The moved objects and their new posi-

tions and orientations are obtained and the scene is up-

dated.

2. To provide more accurate initial solution to the above

optimization, object pairs are selected only in the same

class. Differently from previous RGBD labeling works

based on a large indoor scene data set, we only utilize the

historical scene information including original labeled

RGBD images and 3D reconstruction, to train a random

forest classifier for labeling new captured RGBD images

in the changed scene.

2. Related works

RGBD semantic segmentation. As an early work, Silber-

man and Fergus [SF11] put forward a method by using Con-

ditional Random Field (CRF) model, in which a data term
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and compatibility term are defined according to the geome-

try and texture feature of the given training samples from a

huge database they built. Koppula et al. [KAJS11] present an

algorithm based on the appearance, geometry, and geomet-

rical context of patches generated by over-segmentation of

RGBD images, and an important improvement is that the la-

beling accuracy is increased significantly by introducing ge-

ometrical context. Gupta et al. [GAM13] combine the depth

information with texture information to extract initial con-

tours of RGBD images and generate hierarchical segmenta-

tion. After that, they introduce a SVM classifier with addi-

tive kernels to yield probability of contour consistent with

training set, and select high quality contours to form close

regions. Shao et al. [SXZ∗12] present a semi-automatic seg-

mentation method, and add user interaction to the CRF-

based model. Nan et al. [NXS12] over-segment the input

point cloud into patches by an interesting search-classify

strategy. In our work, we will partially depend on some state-

of-the-art segmentation techniques, such as the training of

contour extraction [GAM13]. In our labeling method, the

whole process requires no manual interaction, which ben-

efits from accurate labeling training on a small quantity of

initial scenes, rather than on a large set of indoor scene data.

Indoor scene modeling with RGBD camera. Kim et

al. [KMYG12] present an efficient method to acquire 3D

indoor environments with variability and repetition. Their

work segments single 3D point cloud scanned via real-time

SLAM technique, classifies it into plausible objects, recog-

nizes them using primitive fitting and connected component

analysis, and extracts their pose parameters. They also in-

troduce a hierarchical structure composed of super-points,

parts, and objects, which can easily support depth data seg-

mentation, fitting, and its match with learned models. With

the similar objective, Nan et al. [NXS12] present another

different solution to indoor scene modeling. They introduce

template fitting to segmented point cloud, and use non-rigid

ICP algorithm to minimize Euclidean distances between

point cloud and its candidate templates. These selected tem-

plates after transformation form a whole 3D scene. Shao

et al. [SXZ∗12] present an interactive approach to model-

ing indoor scene by semi-automatically segmenting RGBD

images. Our purpose is different from theirs. We focus on

scene update problem based on the assumption that the in-

door scene has been reconstructed in advance.

Furniture layout. Some researchers look 3D indoor

scene modeling from another point of view. Yu et al.

[YYT∗11] stress the quality of furniture arrangements for

indoor scene, with the prior condition that all the furni-

ture models have already existed in the given scene. Their

method optimizes furniture arrangements in an automatic

way, by considering the ergonomic factors, visibility, and ac-

cessibility as the measurable indicator of specific placement

of furniture models. The work from Merrell et al. [MSL∗11]

allows user to modify the arrangement when multiple place-

ment suggestions are provided, so that user can add some

user-specified constraints on their designed scene. In their

objective function both the functional criteria and visual cri-

teria are held. Xu et al. [XCF∗13] propose a sketch-based

scene generation algorithm, which can retrieve the furnitures

and their placements at the same time by discovering the

spatial and structural relationships among candidate mod-

els. Compared with the above works, we solve the modeling

problem of a real indoor scene by capturing its RGBD data.

We do not require optimization of reconstructed scene be-

cause it has already been reasonable by means of real place-

ments from human.

Shape matching. In our work, the challenge we face

is not global shape matching but partial shape matching

[LBZ∗13]. Recent representative methods include Shape

Google [BBGO11] and sketch based retrieval [ERB∗12]. In

order to match single-view Kinect scan to high-quality 3D

models, Shen et al. [SFCH12] propose to recover the under-

lying structure of a scanned object by assembling suitable

parts obtained from the repository models. Our problem is

different: we require the comparison between depth image

and 3D model and furthermore the new placement position

must be determined by obtaining transformation parameters

between partial object and 3D model. We design an opti-

mization framework to reach the two objectives simultane-

ously.

3. Overview

We denote the 3D indoor scene reconstructed from real

scene before its change by P. The P is obtained using the

interactive approach in [SXZ∗12]. It not only contains re-

constructed 3D objects but also the captured RGBD images,

their segmentation, and labeling information. The captured

RGBD image of a changed scene is denoted by Q. P and Q
are the inputs of our pipeline, illustrated in Fig. 2. The up-

dated 3D scene according to these images is denoted by U ,

the final output of our pipeline. We denote those constructed

3D objects not moved in the both scenes by static objects.

Those objects are moved to form the updated scene are de-

noted by moved objects.

Our method first performs automatic superpixel segmen-

tation and labeling for Q, which is based on classification

models trained on existent segmented and labeled RGBD

images of P. Objects in Q are extracted by label consistency

of neighbor superpixels to form a 3D point cloud scene,

which is compared to the original 3D scene with mesh mod-

els. We set up a discrete optimization subjective function for

scene matching and update. It is maximized only when all

the static objects rightly overlap with each other in two dif-

ferent scenes. The optimized result is the correspondence be-

tween those static objects. The static objects can make new

partial scene to register to the original scene. Moved objects

are placed in the new scene according to the relative position

and orientation to static objects. Each static or moved object
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is replaced with its matching 3D model in P to accomplish

update and obtain U .

4. Automatic object extraction of a captured scene

The RGBD image of Q is segmented into superpixels, which

then are labeled according to training data of P. 3D objects

are extracted by label consistency of neighbor superpixels.

4.1. Superpixel generation of RGBD images

Over-segmentation of RGBD images. We first over-

segment Q into superpixels. Many related works can be

found to reach the similar objective [BLHW13]. In our work,

we first adopt local features to detect contours, and form

many regions surrounded by these contours with watershed

transform. Color and texture gradients in the image captured

by RGB camera are extracted as monocular features, while

the depth gradient and concavity represented with dihedral

angle are obtained to be geometric features. They are com-

puted in multi-scale manner. Features of RGBD images in

original scenes P are used to train support vector machines

with additive kernels [GAM13]. For new captured images,

color, texture, and geometric features are inputted into the

classifier, and the probability of each pixel belonging to real

contour can be looked as its strength. Because a large num-

ber of contours lead to many small close regions, a hierarchi-

cal segmentation can be formed by merging these regions ac-

cording to the strength of contour features. We set the num-

ber of superpixels to 30. The second column of Fig. 3 shows

the over-segmentation results for three captured RGBD im-

ages.

Recognition of wall and floor. Before labeling RGBD

images of Q, we first judge the floor and wall individually

because they are easily recognized without any training. A

simple way to recognize floor, is to use the height of each

pixel. The region is looked as floor when the height values

are below a very small threshold. For wall recognition our

algorithm supposes that a wall always locates at the farthest

place in the horizontal direction. Based on that, we project

all the points scanned by RGBD sensor onto the plane par-

allel to ground, and set the projection location of camera as

the original point. Then the rectangular coordinate system

in the projection plane is converted into the polar coordinate

system. For all the points between an uniform angle interval

[θ,θ + Δθ], we normalize their distances to the origin be-

tween 0 and 1. The points with distance larger than 0.95 are

regarded as points belonging to wall. For each superpixel of

the given image, all the pixels vote for wall. The third col-

umn of Fig. 3 shows the wall and floor detection results.

Spatial continuity check. In order to make each super-

pixel more reasonable and consistent with human percep-

tion, we design a re-clustering algorithm to check internal

spatial continuity of each superpixel according to the depth

Figure 3: Superpixel generation of RGBD images.

values of pixels. The superpixel with more than one spa-

tially discontinuous parts needs more attention. Specifically,

for all the pixels in one superpixel, we re-cluster them into

hierarchical clusters, and the distance metric between any

two clusters is their nearest spatial distance. When the inter-

cluster error exceeds a specified threshold, the clustering will

be stopped. Finally, some small isolated areas and scattered

noisy points are filtered out. Superpixels after spatial conti-

nuity check are shown in the right column of Fig. 3.

4.2. Automatic labeling

Our objective here is to make superpixels semantically la-

beled with known class labels. These classes are defined in

advance according to the original scenes and their RGBD

images, which have been labeled along with 3D reconstruc-

tion. We use these information generated during the histori-

cal reconstruction process of the original scene to guide the

labeling of the new captured RGBD images.

Training set. Existent object labels of the original scene

contain 6 key classes, sofa, table, chair, bed, cabinet, and

background. The background class consists of some small

objects such as books. Considering the consistency between

the changed scene and the original scene, we choose la-

beled RGBD images of the original scene as training sam-

ples. Suppose there are t training images with labels. For

each training image, we generate superpixels by means of

over-segmentation mentioned in Sec. 4.1. The label of each

superpixel is estimated according to the majority of pixels la-

beled in advance. In order to enhance generalization ability

and reduce the influence of small sample number t, we ran-

domly sample 50 small blocks in each superpixel, and the

block size is fixed to 10×10 pixels. These blocks constitute

a large training set.

Classification. Similarly, many blocks are extracted from

RGBD images captured in the changed scene. We estimate

the labels of these blocks with trained classifiers on the train-

ing set. Random forest classifier is designed to determine the

label of each block represented with features. Specifically,

we adopt the average HSV value of pixels and its histogram,
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gradient histogram, and several geometric properties. They

are the average height, the average normalized depth value,

the average of fitting plane area, and the angle between nor-

mal and the vertical direction. For each pixel, fitting plane

area in its neighborhood is computed by extracting plane

primitive using RANSAC algorithm [SWK07]. In the test-

ing stage, each tree in the forest yields a label for an input

block at the last leaf node after passing its parent nodes with

a series of binary classifications. All the trees vote to decide

the final label for the block. Finally, the label of each super-

pixel is also voted by the majority of their sampled blocks.

Fig. 4 shows a group of labeling results.

4.3. 3D object extraction

Each object is extracted by merging superpixels according to

label consistency of neighbor superpixels, which can be fur-

ther converted into 3D point cloud according to its depth val-

ues and camera coordinate system. For neighbor superpixels

belonging to the same body but with different labels, for ex-

ample, the swivel chair (bottom right) in Fig. 4 where upper

part and lower part are labeled inconsistently, we introduce

a judgment rule based on plane projection. Considering that

the objects in an indoor scene are usually placed vertically

to ground, we orthogonally project the point cloud of super-

pixel onto the ground to compute the overlap between neigh-

bor superpixels. They will be merged if the overlap area is

larger than 50% of the smaller one between convex hulls of

superpixels. It should be noted that although 3D object can

be extracted, its real label can not be accurately determined.

It may have multiple labels temporarily, which will assist in

selecting candidate correspondence pairs for objects in two

different scenes.

5. Scene update

When the scene changes, only local variation is taken with an

RGBD camera. Given P containing nP 3D mesh objects, and

Q having nQ objects only with one partial view, the problem

of scene comparison and update is formulated into combina-

torially mapping from nQ objects to nP objects. Q is repre-

sented with automatically segmented and labeled RGB and

depth images, and point cloud generated for separate par-

tial objects. P is composed of semi-automatically segmented

and labeled RGB and depth images, and reconstruction with

3D furniture models. The mapping is based on features ex-

tracted from appearance, color, geometry, and orientation.

A mapping constraint is imposed to allow one object from

Q to match at most one object from P. We define a match-

ing score term for each candidate matching pair m = {p,q},

which measures how well object q in Q matches object p in

P. Furthermore, we take into account that the relative rela-

tion of two objects should be added to infer whether object

moves. Another term named pairwise consistency degree is

introduced to measure how compatible a pair of objects in

Q is with another pair of objects in P. For example, a sofa

is oriented toward a tea table and they are close in the orig-

inal scene. The pairwise consistency degree judges whether

the relation keeps invariable in the changed scene and how

much it changes.

Optimization problem. Given each candidate match m,

we introduce an optimization formulation to select static

matching ones from n candidate pairs by maximizing score

of a certain quadratic function. The one-to-one constraints

are imposed on each pair of objects to make sure that one

object in Q corresponds with at most one object in P.

maximize mTWsm+mTWcm,

s.t. Am = 1,
m ∈ {0,1}n.

(1)

where m is an indicator vector such that mi = 1 if the i-th pair

of objects can match and zero otherwise. Ws is a diagonal

matrix with positive elements exp{−S} containing similar-

ity functions, such that each function S measures how similar

two counterparts are in several aspects such as appearance,

color, geometric shape, and placement orientation. Wc is a

non-diagonal matrix with positive elements exp{−C} ex-

pressed with geometric consistency functions C, which mea-

sure the compatibility degree of relative geometric relation

of a pair of objects in Q with another pair in P.

One-to-one constraint. One-to-one constraint is imposed

on m by the above constraint equation, and the constraint

matrix A is set to a sparse matrix whose entry is either 0 or 1

based on correspondence between each row and the indicator

vector.

Candidate pair. We only select pairs with the same class

labels as candidate ones. How to obtain these labels is de-

scribed in detail in Sec. 4.2. For object with uncertain mul-

tiple labels, for example, the swivel chair with two labels in

the bottom right of Fig. 4, its candidate pairs will be selected

in more than one classes.

Solution to optimization. The above objective function

can be efficiently maximized using an integer projected fixed

point method [LH09]. The optimization result is right corre-

spondence only between static objects.

5.1. Similarity function

For each candidate pair, the similarity function S measures

its similarity by four terms. They are appearance similarity

term Sa, color similarity term Sc, geometric shape similarity

term Sg, and placement orientation similarity term So.

S(p,q) = ωaSa(p,q)+ωcSc(p,q)

+ωgSg(p,q)+ωoSo(p,q).
(2)

The coefficients ω determine the relative weighting among

the similarity terms, and balance the influence from several

factors mentioned below.

Appearance similarity term. In order to quantify the
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Table Chair Background Floor CabinetBed Sofa Wall Data missing

Figure 4: Labeling results of a group of captured RGBD images. The algorithm is tested on different types of indoor scenes, and effectively

labels all the RGBD images of these changed indoor scenes into 9 classes.

Similarity Rank

Weighted sum

Figure 5: Appearance comparison between scanned partial object

and reconstructed 3D object.

similarity, the depth image of scanned object compares to the

appearances of 3D models. The appearances of 3D model

are represented with its orthogonal projection onto virtual

cameras uniformly distributed on spatial positions. Specifi-

cally, for each 3D model, we uniformly sample N viewpoints

on its bounding sphere centered at the origin, and set one

virtual camera on each viewpoint which points towards the

original center. We compare the region of depth image cap-

tured from object in Q to all the projected images of the 3D

model. Figure 5 shows the comparison process. In order to

speed up the process, these projected views are first clustered

into K clusters. The scanned depth image matches each clus-

ter center, and the most similar projection cluster is selected.

The visual distance is defined as the weighted mean distance

from the depth image to R projected views in the selected

cluster, which is expressed with the following equation.

Sa(p,q) =
R

∑
r=1

d(I(q), Ir(p))
log2(r+1)

. (3)

where the weighting relies on the similarity degree between

the depth image I(q) and each projected view Ir(p). While

comparing two images, Zernike moment is employed to rep-

resent region images and a simple L1 distance is adopted to

measure their difference d.

Color similarity term. Not only appearance of object but

also its color can be employed to distinguish it from other

objects in the scene. Because the RGB image is known for

3D mesh model p, which can give some hints to assist in

building the relation between q and p. A color histogram

CH is introduced to represent the distributions in the images

of objects q and p, which are compared via the earth mover’s

distance (EMD). The term is defined as follows.

Sc(p,q) = EMD(CH(p),CH(q)). (4)

Geometric shape similarity term. 3D partial point cloud

q compares with a complete 3D shape p by geometric shape

similarity and their alignment error. Coarse alignment is first

performed by means of feature correspondence based on

3D key point detection [BWdBP13] and fast tree pruning

based on Euclidean distance threshold, following the idea of

[ZSCO∗08]. We choose a recent Signature of Histograms of

Orientations (SHOT) [TSDS10] as feature descriptor, which

is robust to incomplete data, clutter, and sensor noise. By fast

tree pruning method, initial correspondence is built to rotate

and translate q for alignment with p. Fine alignment start-

ing from initial correspondence is realized by Expectation

Maximization ICP [GP02], which is robust against outliers

and tolerates partial data scarcity in the case of single view.

Inspired by a recent work [TAR∗10], we employ CUDA to

enhance its computation efficiency, which can be sped up

about 100 times on GPU of Nvidia GTX 750 than common

CPU. The final alignment and its error are obtained, which

is seen as the cost of geometric shape similarity term in the

following equation. The error is normalized to [0,1] by the

largest error in all the candidate pairs. We obtain rigid trans-

formation parameters (R,T ) including rotation matrix and

translation vector, which will be used to move the 3D model

in P to the new position in U .

Sg(p,q) = ICP(p,q),

(R,T ) = argmin ICP(p,q).
(5)

Placement orientation similarity term. An important

criterion used to determine whether an object in Q moves,

is its relative orientation θ to its nearest wall. We first use the

transformation parameters (R,T ) computed above to trans-

form the 3D model p. The point cloud of partial object q in

the changed scene is substituted with p after transformation.

The orientation of p is estimated as the angle θ of principal

component vector and the wall after the 3D model p is pro-

jected onto ground plane. The term of placement orientation
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similarity between two objects is defined as follows.

So(p,q) = sin(
|θp −θq|

2
). (6)

5.2. Geometric consistency function

Given one pair of objects u = (p1, p2) in the original scene,

in order to compare its consistency with another pair of ob-

jects v = (q1,q2) in the changed scene, we define a geo-

metric consistency function C. The geometric consistency

function is composed of two terms, pairwise orientation con-

sistency term and pairwise distance consistency term. The

function is defined as follows, and two terms are weighted

using two parameters.

C(u,v) = ωocCo(u,v)+ωdcCd(u,v). (7)

Pairwise orientation consistency term. Each object is

first projected onto the ground to form 2D image, and its

principal component vector is computed. The angle φ be-

tween principal component vectors of a pair of objects de-

scribes the relative direction. The cosine difference of an-

gles between one pair u in P and another pair v in Q is used

to measure the orientation consistency degree Co(u,v).

Pairwise distance consistency term. This term describes

whether the distance between one pair u is consistent with

that between v. We compute the mass center for 2D pro-

jection of each object. The distance is represented with the

plane distance between their projections. The difference de-

gree between pairwise distances du and dv constitutes the

pairwise distance consistency term Cd(u,v), which is defined

as

Cd(u,v) = min { |du −dv|
du

,1}. (8)

To make computation robust against partial occlusion, q is

substituted with p after transformation while computing its

principal direction and center.

6. Experiment results

We have implemented the prototype system using Kinect

on 3.4GHz 4-core Intel PC with 16G memory and GPU of

Nvidia GTX 750, and evaluated the efficiency of automatic

modeling update on different types of scenes, such as office

and home. While capturing the local variation, RGBD cam-

era should be directly oriented towards the changed scene

so that the captured areas of objects are as large as possible.

The capture distance should be appropriate. Note that dark

surfaces may not reflect enough light and the specular re-

flection effect of mirrors or metal also causes data missing.

Table 1 shows the statistics and timing of the modeling up-

date of each scene. The second and third columns indicate

the number of objects.

Parameter Setting. All the parameters in our tests, in-

cluding their values and locations, are listed in Table 2. We

Table 1: The run time (in seconds) of our algorithm.

Scene Total Moved Labeling Update

Office A 11 2 3.7 21

Dining Room 5 1 3.1 16

Office B 9 2 3.5 25

Living Room 5 2 3.2 10

Bedroom 5 3 3.1 13

will focus on two groups of important parameters. The first
group includes two classification parameters used in auto-

matic labeling (Sec. 4.2). They are random tree number and

depth of random forest classifier, affecting labeling results

and further object extraction. If the number of trees is set to

a small value (e.g. less than 10), the classifier becomes unsta-

ble because the votes from a few trees are easily dispersed.

It is gradually increased to make the classification reach a

steady state. Hence the number is appropriately set to 20. In

the same time, the depth of each tree is set to 5 because a

deeper tree may over-fit to a small quantity of training sam-

ples adopted in our method. The second group is composed

of six balancing weights in the optimization framework. The

sum of weights in each function is naturally set to 1. Color

similarity weight is used to discriminate objects in different

colors, and commonly set low because we notice that the

furniture at home and office are intentionally arranged in the

same color to obtain a unified visual effect. Placement ori-

entation similarity term prefers the nearest wall to determine

the object orientation, and a large weight may make it hard

to distinguish objects such as many desks and cabinets reg-

ularly placed along wall or parallel to wall. Therefore, the

two weights are tuned to lower values, e.g., 0.1. Appearance

similarity weight favors the effective comparison between

different categories of objects (e.g., desks and chairs) based

on human visual perception, and it is accordingly with rela-

tively high confidence. Nevertheless, only partial appearance

of scanned objects is available and its discrimination power

is greatly reduced while comparing to multiple views of

3D models, especially among objects in the same category.

Heavily depending on it may cause wrong match between

two similar office chairs. Hence its value is set to a moderate

magnitude, e.g., 0.3. Geometric shape similarity term plays

two important roles, one of which is to accurately determine

registration error, and the other is to produce rigid transfor-

mation used to align a local changed scene to the original

scene. We set its weight to be one half of the gross weights.

In geometric consistency function, orientation consistency is

regarded more important than distance consistency because

the orientation variation relative to local transfer is generally

significant in office and home scenes. They are empirically

set to 0.8 and 0.2, respectively.

Scenes, superpixel generation, and labeling results.

Figure 6 shows superpixel results for a series of RGBD im-

ages captured in real scenes. The boundaries of superpix-

els are visually reasonable, which explains that contour cues
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Table 2: Parameters used in our algorithm.

Parameters Values Sec.

Superpixel number 30 4.1

Distance threshold 0.95 4.1

Angle interval 1/50 4.1

Inter-cluster error threshold 5 4.1

Training image number 51 4.2

Block number 50 4.2

Random tree number 20 4.2

Random tree depth 5 4.2

Overlap threshold 50% 4.3

Appearance similarity weight 0.3 5.1

Color similarity weight 0.1 5.1

Geometric shape similarity weight 0.5 5.1

Placement orientation similarity weight 0.1 5.1

Viewpoint number 120 5.1

View cluster number 10 5.1

EMD histogram size 10 5.1

Key point percent 1% 5.1

SHOT descriptor dimension 352 5.1

Variance of EM-ICP 0.1 5.1

Pairwise orientation consistency weight 0.8 5.2

Pairwise distance consistency weight 0.2 5.2

play a significant role. Wall and floor are removed from

depth images to show that they are recognized effectively.

From the labeling results in Fig. 4, it is seen that most objects

are rightly labeled while there are some misclassified parts

such as leg of chair. These errors come from noise, discon-

tinuous points, and missing depth, which can not be avoided

because of the condition limitation of low-cost depth sen-

sor. Moreover, these errors are also related to discriminative

power of descriptors.

Scene rearrangement. Figure 1 shows that our algorithm

has ability of automatically rearranging different types of

scenes, which can avoid any possible conflict with origi-

nal scenes and yield consistent modeling with real scenes.

Moreover, our algorithm allows to deal with multiple moved

objects at the same time, e.g., desk, chair, and cabinet, as

illustrated in the bedroom scene (right in the second row).

Optimization term analysis. We adopt an office updating

experiment to demonstrate the effects of different terms, il-

lustrated in Fig. 7. The experiment is to update the upper left

scene with a RGBD image of chair and safe box movement

(upper middle), and the updated result is shown in the upper

right of Fig. 7. The case of adopting the similarity function

only is shown in (a). The position and orientation of desk

is wrongly updated: it is placed outside the wall. In addi-

tion, the safe box and chair are in wrong orientations. With-

out geometric consistency function to take their relative rela-

tionship into consideration, such objects are wrongly placed

although they rightly match models. This validates the ne-

cessity of geometric consistency function. We also try to ne-

glect appearance similarity term. This causes a false match

between safe box and bookcase (see Fig. 7(b)). Figure 7(c)

(a) (b) (c)

Figure 7: Optimization term analysis. (a) Without geometric consis-

tency function. (b) Without appearance similarity term. (c) Without

geometric shape similarity term.

presents that it is difficult to differentiate between the desk

close to the safe box and another one along left wall without

geometric shape similarity term, since their color, appear-

ance, and relative orientation to wall are all similar. More-

over, neighboring chair and safe box refer to the desk, and

hence they are also wrongly displaced.

Multiple scene variations. Our approach can accommo-

date continuous changes of a scene, as the living room shown

in Fig. 8(a). The first movement is to change the position and

orientation of the box in blue and the table in yellow. Two so-

fas in green are the static references in this case. The second

variation of scene is based on the first one, in which the box

is removed from the scene. When the local changed scene

is captured, the reference objects are two sofas and one tea

table in green. We show that the two variations of scene are

both accurately modeled.

Object removal. Besides a previous example in Fig. 8(a),

we supplement two extra examples about object removal

as shown in Fig. 8(b). Objects in blue are removed from

two original scenes while desks remain static as references.

Each desk to be updated can correspond with the desk in

the original scene, and its rigid transformation parameters

are used to register the local changed scene into the whole

original scene. Removed chairs cannot be captured so that

the changed scene without the chair will substitute the local

part of the original scene. This is why they disappear in two

updated 3D scenes.

Large scene variation. In Fig. 9, we demonstrate two

updating examples (a) and (b) for an office scene with 9

objects. In the case (a), 6 objects (upper right) except two

desks and a chair (upper middle) are moved. We compare

the updated 3D scene (middle right) to its expected result

(bottom right) and find that only three static objects in green

are rightly reconstructed while all other objects in red are

wrongly placed. It is because that the geometric consistency

function becomes invalid when it is lack of neighboring ref-

erence objects. In the case (b) that all the objects are moved,

it can be seen that their positions and orientations (in red)

are completely wrong after updating. Although each object
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Figure 6: The test scenes separated by black solid lines are bedroom, office B, office A, living room, and dining room. The superpixel segmen-

tation results neighboring to them are generated from RGBD images captured in these scenes.

(a)

(b)

Figure 8: The tests on continuous changes of scene and the removal

of original objects.

can rightly match its 3D model, its new position is unknown

since each object is unable to find its neighboring reference.

7. Conclusion

We presented an automatic approach to modeling update of

indoor scenes with a consumer RGBD camera. It helps user

to conveniently obtain alterable reconstruction without extra

assistance, which significantly reduces modeling workload.

Limitations. Our method depends on a strong assumption

that static objects should exist as references to moved objects

when taking a local changed scene. If all the objects move,

the optimization will not converge. Moreover, we observed

two main failure modes:

(b)

(a)

Figure 9: The tests on large scene variation.

Cluttered scene update. We perform an experiment to val-

idate the update of a cluttered scene with smaller objects, as

illustrated in Fig. 10. The original scene (upper left in (a)) is

clean whereas in the changed scene (bottom left), many toys,

tools, cups, bottles, food, books, and so on, are deposited

on the sofa and table. The table moves, and the cabinet is

placed behind table to form occlusion. Labeling results (b)

show that the original image (upper middle) is rightly la-

beled while there are large amounts of errors in the image

(bottom middle) of changed scene. In the updated scene (c),

the cabinet is mostly occluded by table and becomes com-

pletely unrecognizable, which makes it disappear (bottom

right). The left sofa is partitioned into two parts by various

small objects, and in the matching stage each of the two parts

matches one sofa model. As a result, the two sofa models

overlap. The middle sofa is labeled as table and substituted

with a table model. The right sofa is removed from the scene

since its data is mostly missing in the presence of large oc-

clusion.
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(a) (b) (c)

Figure 10: Cluttered scene update.

(a) (b) (c)

change 
detection

Figure 11: New object insertion and change detection.

New object insertion. Unlike recent methods such as

[KMYG12], that accommodate new object insertion, our

method fails to update scenes when new objects are inserted,

as shown in Figure 11. While updating the scene (a) after a

new desk is inserted (b), it is mistakenly substituted with

a cabinet in red (c). Our method does not support new ob-

ject insertion currently because our training samples are only

composed of existent models in the original scene.

Applications. Our technique can be employed to assist

in 3D indoor scene modeling. Compared to previous solu-

tions to scene reconstruction with consumer RGBD cam-

era, which produces a static scene in 3D, our method avoids

reconstructing the whole 3D scene from scratch when the

scene partially changes. The full 3D scene can be automati-

cally and quickly generated again by only taking one RGBD

image of local variation. These scenes can also be provided

for not only digitalizing different schemes while rearrang-

ing furniture in interior designs but also building frequently

changed indoor 3D map beforehand for robots.
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