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Abstract In this paper, we present a shift-invariant ring
feature for 3D shape, which can encode multiple low-level
descriptors and provide high-discriminative representation
of local region for 3D shape. First, several iso-geodesic rings
are created at equal intervals, and then low-level descriptors
on the sampling rings are used to represent the property of a
feature point. In order to boost the descriptive capability of
raw descriptors, we formulate the unsupervised basis learn-
ing into an L1-penalized optimization problem, which uses
convolution operation to address the rotation ambiguity of
descriptors resulting from different starting points in rings.
In the following extraction procedure of high-level feature,
we use the learned bases to calculate the sparse coefficients
by solving the optimization problem. Furthermore, to make
the coefficients irrelevant with the sequential order in ring,
we use Fourier transform to achieve circular-shift invariant
ring feature. Experiments on 3D shape correspondence and
retrieval demonstrate the satisfactory performance of the pro-
posed intrinsic feature.
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1 Introduction

3D models have been extensively applied in the domains of
multimedia, graphics, virtual reality, amusement, design, and
manufacturing [39] due to the rich information preserving the
surface, color, and texture of real objects. A huge number
of publicly available models such as Google 3D Warehouse
have been quickly spread online. Moreover, with the devel-
opment of RGB-D devices, e.g., Microsoft Kinect, users can
obtain 3D models in a convenient and efficient way, which
further leads to the explosion of 3D data. This rapid growth
requires effective retrieval and classification techniques [3]
for their management and reusing.

There have been many solutions to 3D shape recog-
nition, correspondence, classification, and retrieval in the
past decade. These solutions are directly related with shape
descriptor, and the comprehensive and excellent reviews
can be found in an early work [39] and the latest works
[23,24]. 3D shape descriptors are used to characterize impor-
tant global or local geometric characteristic, which are dis-
tinctively discriminative with other shapes or local regions.
Local descriptor captures important geometric changes on
local regions of 3D surface, which depicts the different prop-
erties of local regions on various shapes. An earlier and rep-
resentative work is spin images [14]. Recently, Darom and
Keller [8] extend the spin images to make them have the capa-
bility of scale-invariant and interest point detection. Sipiran
et al. [35] adopt 3D Harris detector to find interesting points
for 3D shape retrieval, which can be seen as an extension from
2D Harris detector measuring the variation in the gradient of
a given function (e.g., the intensity function of a image). 3D
SURF descriptor [18,25] is recently proposed for classifying
and retrieving similar shapes.

The above local descriptors depend on extrinsic properties
constrained by location and orientation of 3D mesh, or a local
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coordinate system defined on a mesh vertex. To overcome the
limitations, several intrinsic descriptors have been proposed
in recent decade, which do not need to specify the descriptor
position relative to an arbitrarily defined coordinate system.
Therefore, they achieve much better discriminative capability
for 3D shape analysis. Laplace–Beltrami operator, which is a
generalization of the Laplacian from flat space to manifold, is
appealing for 3D shape retrieval because of sparse, symmet-
ric, and intrinsic properties of its robustness to rigid trans-
formation and deformation. Retrieval methods [9,12,20,41]
extract main eigenvalues and eigenvectors of Laplace matrix
generated on local regions to match different regions of 3D
shapes. Laplace–Beltrami operator also provides an efficient
way of computing a conformal map from a manifold mesh to
a homeomorphous surface with constant Gaussian curvature,
and the histogram of conformal factors [2] serves as a robust
pose-invariant signature of 3D shape, which is regarded as
an attribute of a graph node to identify segmented parts in
bipartite graph matching for 3D shape retrieval [30]. In a
recent work [29], 3D shape is also partitioned into several
connected iso-surfaces (annuluses) of conformal factors and
expressed with a graph where node substitutes each annu-
lus. Heat kernel signature (HKS) [38], a recently proposed
local descriptor, attracts much attention from researchers. It
provides rich local geometric information which makes the
signature invariant to isometric deformation and multi-scale
characteristic, thereby achieving better performance in 3D
shape retrieval and matching [5,6,37]. In order to overcome
the influence of diffusion time change under different shape
scales [6], Fourier transform is imposed on HKS at each given
vertex to obtain time invariants.

Despite the progressive improvement on 3D shape descrip-
tors, the performance of existing 3D shape descriptors is still
far from satisfactory. The main issue results from the insuf-
ficiency in describing complex 3D shapes just using local
statistics, i.e., most local descriptors only catch a piece of
geometric characteristics. However, 3D shape is composed of
complex topological structure and visibly variational geome-
try; consequently, only limited information can be extracted.
To further improve the performance of 3D shape descrip-
tor, an alternative approach is to learn hidden states from
local descriptors and then use them as feature representa-
tion. Castellani et al. [7] propose a scheme of local descrip-
tor extraction based on a generative model. Local patches
are modeled as a stochastic process through a set of circular
geodesic pathways and learned via hidden Markov model.
Another work uses intrinsic shape content [19] to character-
ize the local shape property. In the method, the shape context
is processed in an intrinsic local polar coordinate system;
therefore, it is intrinsic and invariant to isometric deforma-
tion. Furthermore, Fourier transform is applied to the original
shape content data to deal with orientation ambiguity.

Extracting discriminative information from low-level data
is an important work in signal processing, image processing,
and other domains, due to that the effective feature will boost
the performance of information processing. In this paper, we
propose a local ring feature for 3D shape which can encapsu-
late multi-descriptor into a higher discriminative feature. The
idea is to establish iso-geodesic rings of feature point on the
mesh, and the iso-geodesic rings are sampled at equal inter-
vals. And then the low-level descriptor values on the sampling
rings are used to represent the property of the feature point.
However, there exist two problems by applying this feature
directly into shape analysis, such as shape correspondence
and retrieval. First, this feature is redundant which leads to
low discriminative and low efficiency. Second, during the
sampling stage, although starting points of the rings for one
feature point can be determined and made with same direc-
tion, for different feature points the orientations of starting
points are difficult to be selected, which consequently makes
the comparison or similarity calculation of the feature inef-
ficient and inaccurate.

In signal processing and pattern recognition domains,
there has been growing interest in sparse coding [21,27]
with a learned dictionary instead of a predefined one, which
is advocated as an effective mathematical description for
information processing. Sparse coding is an unsupervised
learning algorithm that learns a discriminative high-level
description of the unlabeled input data. It represents each
input with a sparse linear combination of a set of basis
functions and has shown to be useful in many application
fields.

Inspired by the success of sparse coding in image and pat-
tern recognition and also to overcome the above mentioned
problems, in this work, we introduce sparse coding into our
method for extracting high-level feature. The first problem
can be easily resolved using sparse coding to learn bases and
then extracting sparse coefficients regarded as the high-level
feature. In order to settle the second problem, we adopt an
improved sparse coding method named shift-invariant sparse
coding (SISC) [10,36], which allows basis to be replicated
at each shift position. Therefore, even starting points of rings
are different for different feature points, the bases can be
learned against the influence. After the bases are obtained,
the sparse coefficients can be efficiently got by solving an L1-
penalized optimization problem. Finally, to make the coeffi-
cients irrelevant with the sequential order of ring, we apply
Fourier transformation to the coefficients and then taking
the absolute values acting as shift-invariant ring feature (SI-
RF).

Several experiments are conducted in both 3D shape corre-
spondence and retrieval tasks. Results and comparisons with
state-of-the-art methods indicate that the proposed method
has promising performance.
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Fig. 1 Illustration of extracting
geodesic rings of four shapes.
For each shape, the original
shape is drawn in left, while
extracted rings are plotted in the
right. The feature points are
plotted in red, and the shading
color represents the SDF value

The rest of this paper is organized as follows: Sect. 2 intro-
duces the ring descriptor. Section 3 describes the details of the
SI-RF. Experiments of shape correspondence and retrieval on
several shape datasets are presented in Sect. 4. We conclude
this paper in Sect. 5.

2 Ring descriptor for 3D shape

2.1 Iso-geodesic rings extraction

For a 3D shape, the description value of the vertex does not
provide sufficient discriminative information, especially for
the low-level descriptor. Usually, the neighboring vertices
and their topological connections provide much more infor-
mation. Therefore, an effective way to extract highly rep-
resentative feature of a feature point is to encode the local
area’s property. The straightforward method to generate local
neighborhood region is creating n-rings of a feature point on
the mesh by their topological connections. However, since the
edges have variational length, the vertices in the rings have
different geodesic distances to the feature point. In order to
overcome the shortcoming, we create rings through the geo-
desic measure.

For a feature point vi of the mesh M , we compute geo-
desic distances by fast marching method [17] from the feature
point vi to all other vertices. And then several level sets of
the geodesic function are computed using a fixed number of
increasing distances d1 < · · · < dNr , where Nr is the number
of rings. Since the number of the sampled points in each ring
is different, we use linear interpolation to generate a fixed
number of sampling points Ns in each ring and also make
them equally spaced. Points of each ring are collected in a
uniform direction (same in clockwise or anti-clockwise) and
with the form of Ri = [pdi

1 , . . . , pdi
Ns

] ∈ R
Ns×3. The local

iso-geodesic rings are described as R = [R1; . . . ; RNr ] ∈
R

Ns×Nr×3, which are used to represent the local area of the
feature point vi . The iso-geodesic rings have two advantages:

they are robust to isometric variations and also have the same
dimension. Several examples of extracted geodesic rings are
shown in Fig. 1. In this study, we set the sampling point of
ring Ns = 80 and number of ring Nr = 4.

2.2 Low-level 3D shape descriptors

In order to accurately encode the local property of sampling
rings for feature point, we next focus on extracting a set of
local shape descriptors. Three representative methods, shape
diameter function (SDF) [31], scale-invariant HKS [6], and
average geodesic distance (AGD) [11], are adopted as low-
level 3D shape descriptors, since these local descriptors are
robust against non-rigid and complex shape deformations.

Shape diameter function The SDF [31] is a volume-based
scalar function measuring the diameters of different parts.
The SDF value is computed by sending 30 rays inside a small
cone with angle of 30◦ to intersect with the opposite side of
the boundary and averaging these weighted ray lengths. The
values remain similar on the neighborhood of the same part
and oblivious to articulated deformation.

Scale-invariant heat kernel signature HKS [38] is derived
from a heat diffusion equation using Laplace–Beltrami oper-
ator on surfaces, which has the advantages of providing rich
local geometric information, invariant to isometric deforma-
tion, and multi-scale characteristic. However, a limitation of
the HKS is that it is sensitive to the scale of shape, for exam-
ple, when the shape becomes large the region described by
the HKS becomes small in the same time range. To cope
with the problem, Bronstein and Kokkinos [6] proposed a
scale-invariant heat kernel signature (SI-HKS) by Fourier
transform of the difference of the HKS. The detail of this
method can be found in [6].

Average geodesic distance The AGD is introduced by
Hilaga et al. [11] for the purpose of shape matching. How-
ever, the original AGD is not robust when using extremum
value as a normalization factor, e.g. the use of the intra-class
geometric variations make the local descriptor change eas-

123



870 S. Bu et al.

ily. It is, therefore, difficult to be applied to generate robust
descriptor from a set of models. We modify the normalization
factor to the mean of geodesic distances between all pairs of
vertices to cope with the above limitation. For any model, the
modified AGD descriptor has a fixed mean value 1.

2.3 Ring descriptor for 3D shape

Finally, we concatenate SDF, first six frequency components
of SI-HKS, and AGD descriptors to form a low-level shape
descriptor as

f (xi ) = (SDF(xi ), SI-HKS(xi )[ω1, . . . , ω6], AGD(xi )) ,

(1)

where the dimension of the feature is fm = 8. For the SI-
HKS, the time-scale is set to be [1, 20] with an interval of
0.2, the number of eigenfunction is set to 100, and the log
time base α = 2.

In the next step, the low-level descriptors are interpo-
lated at vertices to form descriptors on the iso-geodesic rings
F(vi ) ∈ R

Ns×Nr× fm with the following form:

F(vi ) =

⎡
⎢⎢⎢⎣

f (p1
1) f (p1

2) . . . , f (p1
Ns

)

f (p2
1) f (p2

2) . . . , f (p2
Ns

)

· · · · · · · · · · · ·
f (pNr

1 ) f (pNr
2 ) . . . f (pNr

Ns
)

⎤
⎥⎥⎥⎦ , (2)

where vi is a feature point on the mesh, Ns is the point num-
ber in the ring, and Nr is the ring number. Because mesh
has adequate density of elements, the descriptor values in
one facet on the mesh change slowly. According to this fact,
linear interpolation is adopted in this study to interpolate
from descriptor values at around vertices to iso-geodesic
rings. In the following processing, we use Fl ∈ R

Ns×Nr to
denote one dimension of the low-level descriptors, where
l ∈ {1, . . . , fm} is the descriptor index.

3 Shift-invariant ring feature for 3D shape

In order to generate intrinsic feature for 3D shape, the pro-
posed method is carried out as the following steps:

1. Down-sampling: the 3D mesh often has thousands of ver-
tices and directly using all of the vertices to learn the dic-
tionary is time-consuming; therefore, in the first step 3D
mesh is down-sampled to hundreds of points for acceler-
ating the dictionary learning.

2. Basis learning: we use a large set of extracted low-level
descriptors on the iso-geodesic rings to learn a set of bases
via sparse coding.

3. Feature extracting: for a given point in the 3D mesh, we
extract the high-level features of the point through solving
an L1-penalized optimization problem.

The overall flowchart of the proposed method is depicted
in Fig. 2.

3.1 Feature point selection

Usually, 3D shapes need more than thousands of vertices
to represent them accurately; however, the feature of a given
vertex is similar to its neighbor vertices. In addition, using the
full set of vertices is computationally intractable for dense
meshes. Therefore, in the first stage of the method, a few
points on the mesh are selected as feature points. We adopt
the uniform sampling that is the farthest point sampling (FPS)
strategy [28], which is adopted to compute subset feature
points V = {vi ∈ M, i = 1, . . . , ns} on the mesh M , where
ns is the desired sampling point number. The initial point
v1 ∈ M is sampled at random.

3.2 Dictionary learning

Sparse coding [21,27] has attracted many researchers from
the domain of image and vision to complete tasks of image
analysis, e.g., image retrieval, classification, recognition, and
segmentation. The advantages of sparse coding are twofold.
The first one is that it can capture higher-level features via
learning basis functions from unlabeled data, and these fea-
tures contain more semantic information and are adaptable to
complex recognition tasks. Another one is that sparse coding
can learn over-complete basis sets, which adequately repre-
sent objects more than limited orthogonal basis, and thus
they can capture a large number of patterns from the input
data.

Through the ring descriptor processing, the originally low-
level descriptors around a point are encapsulated into a fixed
dimension array, as a consequence, the dictionary can be effi-
ciently learned by sparse coding method. However, for differ-
ent feature points on mesh, it is difficult to determine starting
points in the iso-geodesic rings, which may cause low repre-
sentative of the basis functions. For the sake of addressing the
issue, in this study we introduce SISC [10,36] which allows
each basis function to be replicated at each position in the
iso-geodesic rings, and consequently the learned bases are
insensitive to the circular shifts of the input data. The SISC
is an extension of tradition sparse coding [21,27], in which
the multiplication operation is replaced by convolution oper-
ation as shown in Eq. (3). One dimension of the feature (2)
can be represented as

Fl =
Nb∑
j=1

s j ∗ a j , (3)
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Fig. 2 The flowchart of the proposed method

where a j ∈ R
q×Nr is basis which has a lower dimension than

the input data (q ≤ Ns) because the ring number is smaller
than that of sampling points of a ring. Based on the input
Fl and basis a j , the corresponding vector s j ∈ R

Ns−q+1

represents the coefficient for each possible circular offset of
the basis a j . The corresponding optimization problem for
learning bases A = {a1, . . . , aNb} and coefficients s is then
described as

min
A,s

Nd∑
i=1

||Fi − A ∗ si ||22 + λ||si ||1, (4)

s.t. ||a j || ≤ 1, 1 ≤ j ≤ Nb. (5)

Objective function (4–5) is a joint optimization problem,
which is commonly non-convex. Nevertheless, it can be seen
as a convex problem with respect to one variable while keep-
ing the other one fixed. Specifically, s can be solved in the
convex optimization problem with A being fixed, and vice
versa. These sub-problems are solved alternatively and iter-
atively to obtain the optimal A. After the convergence of the
objective function, the sparsest coefficients can be computed
with the learned basis functions. We adopt a fast computation
approach described in [10] to solve the optimization problem
for each dimension of the low-level descriptor. After all types
of descriptors have been computed, a set of bases

{A1, . . . , A fm }

are used to compute sparse coefficients treated as high-level
feature for feature point.

3.3 Shift-invariant feature extraction

Since bases are learned from a set of the feature points on
different shapes, for one point in a mesh the high-level fea-
ture can be represented using the learned bases from solv-
ing the optimization problem of (5) with a learned A. For
one dimension of the low-level descriptor, the sparse coef-
ficient is represented by sl . During the generation step of
iso-geodesic rings, starting points of rings are selected with
same orientation. But for different feature points, they are
not coherent, which consequently results in a rotation ambi-
guity. So as to provide an intrinsic feature for 3D shape, we
introduce Fourier transform to achieve rotation invariance.
By applying Fourier transform to the sparse coefficients, we
can get

F{sk}(ω) =
∑

k

sk exp(−ikω), (6)

F{sk+c}(ω) = F{sk}(w) exp(−icω), (7)

where k represents the index of one basis’s corresponding
sparse coefficient, and c is the circular shift of the sparse
coefficient. Taking the absolute value we have |F{sk}(ω)| =
|F{sk+c}(ω)|, which can eliminate the influence from the
incoherence sequential orders of iso-geodesic rings.
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Finally, one dimension of low-level descriptor corre-
sponding to intrinsic feature θ l is calculated as

θ l =
∣∣∣F{sl}

∣∣∣ . (8)

All the dimensions of intrinsic feature for low-level descrip-
tors are concatenated to form the SI-RF θ = [θ1, . . . , θ fm ].

4 Experiments

For evaluating the proposed SI-RF, experiments on shape cor-
respondence and retrieval are performed. In the shape corre-
spondence experiments we adopt the surface correspondence
benchmark [16] including three data sets that have a variety
of objects with ground-truth correspondences. In the shape
retrieval experiment, we use the McGill shape benchmark
[34] which contains 457 models including shapes with artic-
ulating parts and without articulation. The set of articulated
shapes consists of 255 models in 10 categories, and there are
20–30 models per category.

4.1 Experiments on correspondence

The feature discriminative capability of the proposed method
is first evaluated via shape correspondence experiments,
while the recent works on this filed can be found in [16,26,
40]. In the first two experiments, we use the watertight mod-
els in surface correspondence benchmark [16] as the ground-
truth data. There are 20 shape categories; among them we just
use 11 classes shapes because they have well-defined corre-
spondences as follows: human, glasses, air-plane, ant, teddy,
hand, plier, fish, bird, armadillo, and four-legged animal.

First, we investigate how the radii of iso-geodesic rings
will affect the correspondence performance. Here we set out-
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Fig. 3 Averaged correspondence accuracy with different geodesic
range dNr

most ring’s geodesic dNr to 1 ∼ 15 % of shape’s maximum
geodesic among any pair of vertices. Two correspondence
estimation methods are adopted here: the first one is raw cor-
respondence which selects pair with minimal feature distance
as correspondence, and the other one is spectral correspon-
dence [22]. The averaged correspondence accuracy is used
as the evaluation measure, where it is calculated by averag-
ing the percentage of correct correspondence for all pairs of
shapes. The comparison results are shown in Fig. 3, where
the horizontal axis represents geodesic ratio, and the vertical
axis represents the averaged correspondence accuracy. From
the figure, we can get that when the sampling range is small
the performance is not good. Below 0.08 of the maximum
geodesic, the performance is increasing; however, after that
geodesic range the performance decreases. According to the
results, we select 0.08 of the maximum geodesic as the sam-
pling range for the following experiments.

In the second experiment, the performances of correspon-
dence with different number of bases Nb are evaluated. We
set the basis number to 20, 40, 60, 80, 100, 120, 140, and 160,
respectively. The averaged correspondence accuracies are
calculated through above mentioned means, and the results
are shown in Fig. 4. From the figure, we can conclude that the
accuracy increases fast until the number of basis approaches
80, while the change becomes slow after the number of basis
exceeds 100. Although the larger number of bases results in
better performance, the computation time of dictionary learn-
ing increases rapidly, which causes low computation effi-
ciency. Therefore, a trade-off basis size 80 is determined for
the following experiments. Several correspondence results
are plotted in Fig. 5; above mentioned means are used to
compute correspondence for comparing our feature with the
recent SI-HKS which is highly discriminative.

Since the optimal parameters have been obtained, we
adopt them in the third experiment which uses TOSCA
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Fig. 4 Averaged correspondence accuracy with different number of
basis Nb
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Fig. 5 Illustration of correspondences of three shapes using SI-HKS
and proposed SI-RF features. Two correspondence methods are used:
raw correspondence which selects minimal feature distance between
source and target shapes, and spectral correspondence method. The first
column shows the correspondence results using raw correspondence

with SI-HKS, and the second column shows the results of raw corre-
spondence with proposed SI-RF. The third column shows the results
of spectral correspondence with SI-HKS, and the last column shows
the results using SI-RF. In these figures, the red line indicates wrong
correspondence, while the green line indicates correct correspondence

shapes [4] and ground-truth maps from [16]. For each shape,
1,000 points are sampled via FPS [28]. Points from the source
shape are matched to the target shape, and here we define the
geodesic distance between ground-truth corresponding ver-
tex and matched vertex on the target shape as geodesic error.
The analysis results are plotted in Fig. 6, where the horizontal
axis denotes the geodesic error, and the vertical axis repre-
sents the ratio of correct correspondence. Note in the figure,
at the geodesic error 0.15 (ratio of geodesic error to shape’s
max geodesic distance) the accuracy can reach 90 % with the
proposed method, while only 64.5 % via using SI-HKS.

4.2 Experiments on retrieval

Besides the correspondence experiments, shape retrieval
experiment is also tested for evaluating whether the feature
is suitable for similar shape matching.

In this experiment, we implement a retrieval method based
on the idea of Shape Google [5], and McGill shape bench-
mark [34] is used as retrieval data. The first step is to sam-
ple 1,500 points on the mesh using the FPS [28], and then
a dictionary is learned through low-level descriptors on iso-
geodesic rings of the sampling points. The shape’s global fea-
ture is calculated using the spatially sensitive bag-of-features
(SS-BoF). The process of extracting sparse coefficients has
the similar function as bag of features; hence we directly
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Fig. 6 Ratio of correct matches vs. geodesic error using SI-HKS and
proposed SI-RF

use them to generate SS-BoF. The similarity of two shapes
is measured by the L2 distance. For the SI-HKS, the origi-
nal SS-BoF calculation method is used to extract features of
shapes.

We use six standard evaluation metrics to assess the per-
formance of the proposed method. They are precision-recall
curve, nearest neighbor (NN), first tier (FT), second tier
(ST), E-measure (E), and discounted cumulative gain (DCG),
where the detailed definitions can be found in [33].
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Fig. 7 Recall-precision curve of some previous methods and the pro-
posed method on McGill dataset

Table 1 Retrieval performance of the proposed methods using five
standard measures on the McGill shape benchmark

Methods NN FT ST E DCG

EMD-ARG [1] 93.3 69.2 88.9 – 90.8

SI-HKS 89.1 57.4 71.2 50.7 85.1

SI-RF 93.5 72.7 90.3 64.3 92.3

Bold indicates better values than the other methods

The recall-precision curves of the proposed method and
state-of-the-art methods are shown in Fig. 7, which includes
shape harmonic descriptor [15], light-field descriptor [32],
eigenvalue descriptor of affinity matrix [13], earth movers
distance and attributed relation graph (EMD-ARG) [1]. The
figure shows that the retrieval performance of the proposed
high-level feature is superior to other methods. The numerical
results are listed in Table 1. From the table, we can draw the
conclusion that all of the measures are improved from SI-
HKS to proposed high-level features. The gain of DCG is
8.5 %, which demonstrates that the proposed method has the
capability to improve retrieval performance using learned
bases.

5 Conclusion

Extracting high-level feature of 3D shape is still a challeng-
ing topic up to date, owing to the complex structure com-
pared with image data. In this paper, we present a novel high-
level 3D shape feature extraction framework for correspon-
dence and retrieval of 3D shapes. The unsupervised dictio-
nary learning is adopted to learn high representative bases for
generating local feature of shapes. In the dictionary learning,
for boosting the computation speed, some uniformly sam-
pled points on the mesh are used as feature points. And then,
iso-geodesic rings and corresponding low-level descriptors

on them are collected for representing the local region of
the feature point. SISC is used to learn bases for feature
extraction due to that it can avoid the orientation ambigu-
ity. The sparse coefficients which are more discriminative
are generated through L1-penalized optimization, and then
Fourier transformation is applied to the sparse coefficients so
as to settle the shift-sensitive problem. Finally, the spectrum
of sparse coefficients act as SI-RF. The experiment results
demonstrate that the learned high-level features have better
performance both on correspondence and retrieval tasks.

Although the proposed method achieves better perfor-
mance, several improvements should be made in the future.
First, we use iso-geodesic rings to represent local region
of feature point; however, this method has low efficiency
of computation and possible singularities on them which
may degrade performances. In the following research, bet-
ter local region extracting methods will be investigated. In
addition, currently only one-layer sparse coding is adopted to
extract feature, and we consider that convolutional neural net-
work which has better performance in many domains will be
studied.
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