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ABSTRACT

Deep learning has emerged as a powerful technique to ex-
tract high-level features from low-level information, which
shows that hierarchical representation can be easily achieved.
However, applying deep learning into 3D shape is still a chal-
lenge. In this paper, we propose a novel high-level feature
learning method for 3D shape retrieval based on deep learn-
ing. In this framework, the low-level 3D shape descriptors
are first encoded into visual bag-of-words, and then high-
level shape features are generated via deep belief network,
which facilitates a good semantic preserving ability for the
tasks of shape classification and retrieval. Experiments on 3D
shape recognition and retrieval demonstrate the superior per-
formance of the proposed method in comparison to the state-
of-the-art methods.

Index Terms— 3D Shape classification, 3D shape re-
trieval, Bag-of-words, Deep learning, Deep belief networks

1. INTRODUCTION

In recent decades, with the rapidly developed machine learn-
ing techniques, multimedia content analysis and modeling has
achieved promising progresses. However, almost all meth-
ods still can not generate high-level perceptions similar to that
generated by human brain, due to the shallow representation
level. Neuroimaging techniques such as functional magnetic
resonance imaging (fMRI), electroencephalography (EEG),
and magnetoencephalography (MEG) have achieved remark-
able advances, and consequently theory and architecture of
brain can be understood through these devices. From latest
research on structural and functional brain organization, we
get that the cognition results from the dynamic interactions of
distributed brain areas operating in large-scale networks, al-
though it has long been assumed that cognitive functions are
attributable to the isolated operations of single brain areas [1].
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The brain also appears to process information through multi-
ple stages of transformation and representation.

Inspired by the architectural depth of the brain, neural
network has been extensively studied for decades to train
deep multi-layer neural networks to imitate human brain,
however, training deeper networks consistently yielded poor
results. Recently, deep belief networks (DBNs) [2] has intro-
duced to overcome the problem. The input data are trained
layer by layer in a restricted Boltzmann machine (RBM) [3]
by means of contrastive divergence (CD) [3]. In addition,
deep learning extends the generalization ability against large
intra-class variations, which is benefited by feature learning
from low-level features without pre-defined models. Lee et
al. [4] proposed a convolutional DBN which is a scalable
generative model for learning hierarchical representations
from unlabeled images. They showed that the method can
achieve excellent performance on several visual recognition
datasets. Ciresan et al. [5] proposed a multi-column deep
neural networks for image classification. On the very com-
petitive MNIST handwriting benchmark, the method achieves
near-human performance.

Although deep learning has been successfully applied
to natural language processing, computer vision, and other
fields, the technique is difficult to be applied to 3D shape
analysis due to the intrinsic differences between the structure
of 3D graph data and traditional speech data or 2D images.
3D shapes are one of important multimedia formation, which
has been extensively applied in the domains of multimedia,
graphics, virtual reality, amusement, design, and manufac-
turing [6] due to the rich information preserving the surface,
color, and texture of real objects. In recent years, with the
rapidly developed 3D techniques, the increasing of 3D model
data requires effective retrieval and classification techniques
for their management and reusing.

There have been many solutions to 3D shape recogni-
tion, matching, classification, and retrieval in the last decade.
These solutions are directly related with shape description [6].
Geodesic of 3D shape has an immanent property that its value
is robust against articulated deformation, thereby it is a good
choice for generating descriptor. Jain et al. [7] propose to



use first eigenvalues of the geodesic distance matrix of a 3D
object to generate 3D shape descriptor which are isometry-
invariant. Different from above method which uses shape’s
geometric information, view-based methods [8, 9] are based
on an assumption that if two 3D models are geometrically
similar they also look similar from all different viewing an-
gles. These methods do not require utilization of geometric
attributes or topological relationship, and hence are capable
of handling 3D models with degeneration, holes, and miss-
ing patches. An important problem existent in view based 3D
model retrieval is how to effectively organize and build the
relationship of many views of 3D objects, for example, con-
structing hypergraphs of views [10].

The above discussed methods have the problem that low-
level features are not sufficient to characterize the high-level
semantics of 3D shapes. Inspired by the success of deep learn-
ing in computer vision, in this paper we seek for the possibil-
ity to apply high-level feature learning into 3D shape field.
We propose a novel framework which builds a bridge be-
tween 3D shape and deep learning. The core idea is to ex-
tract bag-of-visual-features (BoVF) from multi-views of the
shapes, and then generate high-level features for 3D shape re-
trieval via deep learning. Specifically, we first generate 200
depth images from a given shapes, and then scale invariant
feature transform (SIFT) algorithm [11] is adopted to extract
visual features from the depth images. In the second step,
we generate a visual vocabulary from visual features of train-
ing shapes, and BoVF of each shape are computed for high-
level feature learning. Next, deep belief network is utilized to
learn a higher representative model, and high-level features
of newly inputed shapes are computed by the model. Finally,
shape classification and retrieval are performed based on the
high-level features. The major advantages of our method are
that the high-level features are learned from a set of shapes
through supervised or un-supervised methods, therefore, bet-
ter discriminability and generalization can be achieved, and
moreover, the performance can be further improved with the
increasing of training data number. Experiments are con-
ducted in both 3D shape retrieval and recognition tasks. Re-
sults and comparison with state-of-the-art methods indicate
that the proposed method can achieve better performance.

2. HIGH-LEVEL VISUAL FEATURE LEARNING
FOR 3D SHAPES

The proposed high-level feature learning method for 3D
shapes is carried out in the following two stages, and the
flowchart of the proposed method is depicted in Fig. 1.

1. Low-level visual feature: We use visual features of
depth images act as low-level features. Depth images
are rendered at position of vertices of dodecahedron,
in addition, for overcoming the rotation sensitive of
depth images, the object is rotated in 10 angles, and

consequently, 200 depth images are obtained. Next,
we adopt SIFT features [11] to represent shape’s visual
features which are extracted from the depth images of
shapes. The bag-of-words paradigm is used to generate
order-irrelevant features for high-level feature learning.

2. High-level feature learning: Because deep learning is
able to generate more discriminative and robust high-
level features from shallow features via multi-layer net-
work, we introduce it to learn high-level features more
suitable for 3D shape classification and retrieval.

2.1. Low-level visual Feature Extraction

The low-level visual feature extraction for 3D models in our
algorithm can be summarized as follows.

Pose normalization. For a given 3D mesh, translate the
center of its mass to the origin and then scale the maximum
polar distance of the points on its surface to one. Rotation
normalization is not performed, but this will be compensated
to some extent because of our way to extract views and local
features.

Image rendering from multi-views. In this research,
depth view images are rendered from 20 vertices of a reg-
ular dodecahedron whose mass center is also located in the
origin. To make the feature robust for rotation, we rotate the
dodecahedron 10 times and extract views at vertices of do-
decahedron. The rotation angle must be set carefully to en-
sure that all the cameras are distributed uniformly and able to
cover different viewing angles for a 3D model. This has been
elaborated in Light Field Descriptor (LFD) [8], however dif-
ferent from the LFD, we discard the binary images and only
use the depth images for shape retrieval task. Hence a 3D ob-
ject is represented by 200 depth images from different views.
The rendering image we use in our experiments has a size of
256×256.

SIFT feature extraction. After depth-images are ren-
dered, we extract the scale and rotation invariant visual fea-
tures using SIFT algorithm on each depth-image. The SIFT
algorithm is carried out with two steps. First, calculate the
multi-scale, multi-orientation and the position information
of the interesting points detected by Difference of Gaussian
method. Second, compute the SIFT descriptors in these inter-
esting points. We use the default parameters for visual feature
extraction, and the output feature vector has 128 dimension.
The SIFT descriptor is designed to be robust to noise and illu-
mination changes of images, moreover, it is stable to various
changes of 3D viewpoints [12], which is a expectant property
to do some compensation for lack of rotation normalization.
According to our experiments, SIFT features’ number vary
from 20 to 40 due to the different content of every depth im-
age. Finally, a 3D model is approximately represented with
up to 5000-7000 SIFT features.

Feature encoding and histogram generation. Each
SIFT feature extracted from 3D models is coded as a visual
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Fig. 1. The flowchart of the proposed method.

word through searching for the nearest neighbor in the vocab-
ulary. Prior to encoding features, the vocabulary is learned
with K-means algorithm via clustering the features collected
from every view of every model into a specified vocabulary
size. In order to obtain satisfactory discrimination capability,
we set the number of words from 1000 to 3000 in experi-
ments. In the experiment, we randomly choose 50% models
per category to generate the visual vocabulary due to the
tremendous computing workload of the clustering process.

2.2. Feature Learning via Deep Learning

In this work, for achieving an optimal balance between inter-
class variance and intra-class affinity, it is necessary to fur-
ther learn high-level features from low-level features. Deep
learning aims to enlarge the inter-class distance and reduce
the intra-class distance, hence suitable for the task. Due to
the DBN has shown good performance and is a probabilistic
approach, we adopt the DBN as the feature learning method
to extract high-level features for the 3D shapes.

2.2.1. Restricted Boltzmann Machines

Restricted Boltzmann machine (RBM) is a two-layer undi-
rected graphical model where the first layer consists of ob-
served data variables, and the second layer consists of latent
variables. The visible layer is fully connected to the hidden
layer via pair-wise potentials, while both the visible and hid-
den layers are restricted to have no within-layer connections.

The joint distribution p(v,h; θ) over the visible units
v and hidden units h, given the model parameters θ =
{w,a,b}, is defined in terms of an energy function E(v,h; θ)

of

p(v,h; θ) =
exp(−E(v,h; θ))

Z
, (1)

where Z =
∑

v

∑
h exp(−E(v,h; θ)) is a normalization fac-

tor or partition function. For a Bernoulli (visible)-Bernoulli
(hidden) RBM, the energy is defined as

E(v,h; θ) = −
V∑
i=1

H∑
j=1

wijvihj −
V∑
i=1

bivi −
H∑
j=1

ajhj , (2)

where wij represents the symmetric interaction between the
visible unit vi and the hidden unit hj , bi and aj are biases,
and V and H are the number of visible and hidden units.

Because there are no direct connections between hidden
units in a RBM, the conditional probabilities can be efficiently
calculated as

p(hj = 1|v; θ) = σ

(
V∑
i=1

wijvi + aj

)
, (3)

p(vi = 1|h; θ) = σ

 H∑
j=1

wijhj + bi

 , (4)

where σ(x) = 1/(1+ exp(−x)) is a sigmoid activation func-
tion.

The marginal probability that the model assigns to a visi-
ble vector v is

p(v; θ) =

∑
h exp(−E(v,h; θ))

Z
. (5)

The derivative of the log probability of training vector with
respect to a weight is

∂log(p(v))

∂wij
= ⟨vihj⟩data − ⟨vihj⟩model , (6)
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Fig. 2. Averaged classification accuracy on different visual
vocabulary size BoWn (SHREC 2007).

where the angle brackets are used to denote expectations un-
der the distribution specified by the subscript that follows.
This leads to a very simple learning rule for performing
stochastic steepest ascent in the log probability of the training
data

∆wij = ϵ
(
⟨vihj⟩data − ⟨vihj⟩model

)
, (7)

where ϵ is a learning rate. Unfortunately, ⟨vihj⟩model is ex-
tremely expensive to compute exactly, so that the CD approxi-
mation [3] to the gradient is used for updating the weightings.

2.2.2. Deep Belief Networks

Stacking a number of the RBMs and learning layer by layer
from bottom to top gives rise to a DBN. It has been shown
that the layer-by-layer greedy learning strategy [2] is effec-
tive, and the greedy procedure achieves approximate maxi-
mum likelihood learning.

In our work, the bottom layer RBM is trained with the
input data of BoVF, and the activation probabilities of hid-
den units are treated as the input data for training the upper-
layer RBM. The activation probabilities of the second-layer
RBM are then used as the visible data input for the third-
layer RBM, and so on. After obtain the optimal parameters
θ = {w,a,b}, the inputed BoVF are processed layer by layer
with Eq. (3) till the final layer. And the last layer’s output
o(X) is used as the high-level features. In the retrieval, L2

distance of the features is used to measure the similarity of
two shapes X and Y as

ds(X,Y) = ||o(X)− o(Y)||2. (8)

3. EXPERIMENTS

In order to assess the proposed method, we use two standard
3D shape benchmarks to evaluate the performances on classi-
fication and retrieval. Experiments by using different param-
eters are performed to obtain optimal parameters, and then

we use the optimal parameters to evaluate the retrieval perfor-
mance.

In this study, SHREC 2007 watertight models [13] and
McGill 3D shape benchmark [14] are used as the test data.
The SHREC 2007 watertight dataset [13] is made up of 400
watertight mesh models, subdivided into 20 classes, each of
which contains 20 objects with different geometrical varia-
tions and also articulated deformations. The complete McGill
shape database contains 457 models including shapes with ar-
ticulating parts and without articulation. The set of articulated
shapes consists of 255 models in 10 categories, and there are
20-30 models per categories.

The low level visual feature extraction including image
rendering, SIFT feature extraction, and vocabulary generation
totally takes about 23400 seconds for SHREC 2007 watertight
models and 26800 seconds for McGill 3D shape benchmark.
The high level feature learning phase costs about 600 seconds.
All the experiments are conducted on the platform with 8G
memory and Intel i3 core processor.

3.1. Experiments on Classification

In order to assess the classification performance of the pro-
posed method, we first study the performance while setting
different parameters on SHREC 2007 dataset. We use aver-
age classification accuracy as the evaluation measure for the
following experiments. The training data are randomly se-
lected from the SHREC 2007 dataset, and the remaining data
are treated as test data. First, let us see how the different word
numbers affect the classification accuracy. We set the number
to 500, 750, 1000, 1500, 2000, 2500 and 3000 respectively,
and obtain different results, which is shown in Fig. 2. In ad-
dition, we use different size of training data to evaluate the
performance. As can be seen, generally, small dictionary size
leads to lower classification accuracy. Although larger dictio-
nary size achieves better performance, the calculation time of
the visual features increases rapidly, which causes low com-
putation performance. Therefore, an optimal words number
of 1000 is selected for the following experiments.

From the results of above experiments, we selected
BoWn = 1000 to apply into the proposed method for the
following experiments. We construct four layers for DBN in-
cluding input and output layers. The number of nodes in each
hidden layer is empirically set to be 1000, 800. In the classifi-
cation experiments, we randomly select 50% models in each
category as training samples, and left models as test data.
The average classification accuracies of the proposed method
on SHREC 2007 and McGill dataset are 93% and 89%, re-
spectively. Only using the BoVF, the average classification
accuracies on SHREC 2007 and McGill dataset are 83% and
78%, respectively. From the comparison results, we can con-
clude that the high-level feature which extracted by the deep
network can achieve much higher recognition accuracy, and
therefore the high-level feature is more discriminative.
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Fig. 3. Recall-precision curve of some state-of-the-art meth-
ods and proposed method on SHREC 2007 dataset.
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Fig. 4. Recall-precision curve of some previous methods and
the proposed method on McGill dataset.

3.2. Experiments on Retrieval

Evaluation metrics. We use six standard evaluation metrics
to assess the performance of the proposed method. They are
precision-recall curve, nearest neighbor (NN), first tier (FT),
second tier (ST), E-measure (E), and discounted cumulative
gain (DCG), where the detailed definitions can be found in
[15].

Experiments on SHREC 2007. First, we use the SHREC
2007 dataset to evaluate the retrieval performance of the pro-
posed method. In the experiments, we use the shapes in train-
ing dataset to train a DBN model, and then use the meshes
in SHREC 2007 to generate high-level features for similarity
calculation.

The recall-precision curves of some state-of-the-art meth-
ods and proposed method are plotted in Fig. 3. From the
figure, we can see that the proposed method achieves better
overall retrieval performance.

The numerical evaluation measures are listed in Table
1. From the table, we can conclude all the measures have
remarkable improvements from using BoVF to high-level
features. The improvement of DCG index is 6.84%, which
demonstrates that the proposed method has the capability to

Table 1. Retrieval performance of proposed method using
standard measures on SHREC 2007 dataset.

Method NN(%) FT(%) ST(%) E(%) DCG(%)
BoVF 88.35 54.36 33.38 47.00 85.44

Proposed
Method 91.25 69.89 42.70 59.90 92.28

Table 2. Retrieval performance of proposed method using
standard measures on McGill dataset .

Method NN(%) FT(%) ST(%) E(%) DCG(%)
BoVF 87.31 44.59 28.69 41.69 81.37

Proposed
Method 90.15 61.81 39.79 58.29 89.23

improve retrieval performance by using high-level features.
We can also find that nearest neighbor (NN) has the minimal
improvement in comparison with other evaluation metrics.
This is mainly because the NN only checks the validity of
the most nearest of the retrieval results, while our proposed
method can ameliorate the whole retrieval performance.

Experiments on McGill dataset. In order to assess the
robustness of the proposed method, we also perform an exper-
iment on McGill dataset of articulated 3D shapes [14]. The
pre-calculated BoVF and DBN model are used to generate
high-level features for shape retrieval. The recall-precision
curves of the proposed method and some other methods are
shown in Fig. 4, which includes shape harmonic descriptor
(SHD) [16], light-field descriptor (LFD) [8], eigenvalue de-
scriptor (EVD) of affinity matrix [7]. From the figure, we
can see that the average retrieval performance of the proposed
high-level features is superior than other methods. Same as
the previous experiment, through the deep learning, the re-
trieval accuracy is also noticeably improved from that using
BoVF. The six standard evaluation metrics on McGill dataset
are listed in Table 2.

4. CONCLUSION

In this paper, we present a novel high-level feature learn-
ing approach for 3D shapes. In the first stage, low-level 3D
shape visual features and BoVF features are extracted to rep-
resent order-irrelevant features. And then DBN is adopted
to learn semantic high-level features. This high-level feature
is employed to perform 3D shape recognition and retrieval.
Experimental results demonstrate that the learned high-level
features can achieve better performance compared to other
methods. The experiments results also show that the learned
high-level features are more discriminative which can sup-



press intra-class variation and enhance the inter-class similar-
ity separation. From the retrieval results shown in Fig. 3 and
Fig. 4, the overall retrieval performances are boosted by us-
ing the learned high-level feature compared to that using the
low-level features.

Different from traditional deep learning methods used in
image processing, we adopt visual BoVF as the input for
deep learning in this work, because the order of images taken
from views are not directly comparable. Furthermore, directly
using low-level features as input for deep learning may re-
quire lots of training data. But usually 3D shape dataset only
contains a small amount of shapes, thereby, it is impossible
to achieve commendable accuracy. Through the proposed
method, only a small amount training samples are required
to train a DBN model, and adequate performance can be ac-
complished. Nevertheless, the retrieval performance can be
further improved by utilizing more training data.

At present we only investigate SIFT as the low-level de-
scriptors, although promising results are obtained, better re-
trieval and recognition performance may be achieved by using
other visual descriptors or sampling scheme. In addition, in
practical applications especially for Kinect, only singe-view
image and depth image are available for shape recognition or
retrieval, thereby, it is necessary to develop a method which
can take full advantage of RGB-D information.
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