
T
hree-dimensional shapes are used

extensively in fields such as me-

chanical design, multimedia games,

architecture, and medical diagno-

sis.1 All of these applications need to store, rec-

ognize, and retrieve 3D models effectively and

automatically. Because the characteristics of

3D shapes differ from those of text and images,

traditional classification and retrieval techni-

ques cannot be applied directly to 3D objects.

Hence, 3D shape analysis remains a challenging

issue.

Researchers have proposed numerous solu-

tions to 3D shape recognition, matching, and

retrieval problems.1,2 Although tremendous

advancements have been made, current meth-

ods are still far from satisfactory for applying

3D objects in more realms. Geometry- and

view-based methods, for example, only use

partial information from a 3D object (see

the “Geometry- and View-Based Methods for

3D Shape Analysis” sidebar). Geometry-based

methods use the complex topological structure

and geometric properties of the 3D model but

ignore the visual similarities between 3D

objects. Conversely, view-based methods only

consider the visual characteristics of a model

from different viewing angles. These methods

neglect either the extrinsic features or intrinsic

properties of 3D objects. What will happen if

we combine different modality information in

a creative and effective way?

Information in the real world has various

manifestation modalities. Each of these typically

carries different information and is rarely inde-

pendent of others. For example, video contains

visual and audio signals, images are often associ-

ated with captions and tags, and 3D models can

be described by multiview images captured from

different angles and 3D shape features. Because

these totally different modalities depict the

same object, some highly nonlinear relation-

ships exist between them. However, different

modalities have different representations and

structures. For example, images are often repre-

sented with real-valued pixel intensities or the

outputs of feature detectors, whereas 3D shapes

are usually represented with 3D features that

contain information about geometric attributes

and topological structures. This makes it hard to

discover the nonlinear relationships between

features across modalities.

This article proposes fusing the different

modality data of 3D shapes into a deep learning

framework. Our core idea is to better mine the

deep correlations of different modalities. High-

level features are first extracted using two deep

belief networks (DBNs), one for geometry-based

modality with the input of a geodesic-aware

bag of features (GA-BoF) and the other for view-

based modality with the input of a bag of visual

feature (BoVF).3 We then use a restricted Boltz-

mann machine (RBM)4 to associate the high-

level features from each modality. Our method

fuses intrinsic and extrinsic features to provide

complementary information so better discrimi-

nability can be reached. Results from experi-

ments on 3D shape retrieval and recognition

tasks indicate that the proposed method can

improve performance.

Multimodal Feature Extraction
and Fusion
The proposed multimodal feature extraction

and fusion method is a three-step process. Fig-

ure 1 illustrates the approach’s pipeline.

Geometry-Based Feature Generation

We adopt a scale-invariant heat kernel signa-

ture and average geodesic distance as the low-

level 3D shape descriptors to generate middle-

level features. These two local descriptors are
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robust against nonrigid and complex shape de-

formations. More importantly, they both con-

sider the global shape information, which is

necessary for global shape retrieval.

Scale-Invariant Heat Kernel Signature. The

heat kernel signature (HKS) is derived from

a heat diffusion equation using a Laplace-

Beltrami operator on surfaces, which has the

advantages of providing rich local geometric

information, invariance to isometric deforma-

tion, and multiscale characteristics.5 However,

the HKS is sensitive to the shape’s scale. To cope

with this problem, Michael Bronstein and Iaso-

nas Kokkinos proposed a scale-invariant heat

kernel signature (SI-HKS) by Fourier transform

of the difference of the HKS.6

Average Geodesic Distance. The average geo-

desic distance (AGD) is initially introduced for

the purpose of shape matching. However, the

AGD is not robust when using extremum as a

normalization factor; for example, using the

intraclass geometric variations make the local

descriptor change easily. It is therefore difficult

to apply the AGD to generate a bag of words

(BoW) from a set of models. We modify the nor-

malization factor to the mean of geodesic dis-

tances between all pairs of vertices to cope with

this limitation. For any model, the modified

AGD descriptor has a fixed mean value 1.

Low-Level Descriptors. We concatenate the

first six frequency components of the SI-HKS

and AGD descriptors to form a low-level shape

descriptor as

F xið Þ ¼ SIHKS xið Þ x1;…;x6½ �ð Þ;AGD xið Þ ð1Þ

where the feature dimension is M ¼ 7.

Geodesics-Aware Bag of Features. In the next

step, we compute a BoF to represent the occur-

rence probability of geometric words, and

adopt k-means to generate them. After obtain-

ing the geometric words C ¼ c1; c2;…; cKf g of

size K, we quantize the low-level descriptor

space to obtain a compact representation. For

Geometry- and View-Based Methods for 3D Shape Analysis
Geometry- and view-based methods are popular solutions to

3D shape recognition, matching, and retrieval problems.1,2.

Geometry-based analysis methods usually extract local

or global descriptors and then train classifiers using these

descriptors or calculate descriptor similarity for shape classi-

fication and retrieval.3,4 These methods require high-

quality descriptors, which influence the performance

dramatically. Thus, the crucial problem in geometry-based

approaches is how to define sensitive, unique, stable, and

efficient shape descriptors that are robust against isometric

transformation.

Instead of using the properties of the 3D model itself,

view-based methods assume that if two 3D models are

geometrically similar, they will also look similar from corre-

sponding angles.5,6 Biao Leng and his colleagues use deep

belief networks (DBNs) to improve the performance of

view features in 3D shapes.7 This approach doesn’t require

geometric attributes or topological relationships, so it can

handle 3D models with degeneration, holes, and missing

patches. Generating highly discriminative descriptors for

3D objects typically requires capturing a large number of

views, and consequently we need an effective way to

organize and discover relationships between these views.

With the rapid progress in machine learning, feature learn-

ing for local and global descriptors, which can improve the

discriminability of the original descriptors, is becoming a

hot research topic.3–9
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each point x 2 X with the descriptor F xð Þ, we

define the feature distribution / xð Þ ¼ /1 xð Þ;…;ð
/K Xð ÞÞT as a K � 1 vector whose entries are

ui xð Þ ¼ c xð Þ exp � F xð Þ � cik k22
kBoFd

2
min

 !
ð2Þ

where the constant c xð Þ is selected to satisfy

/ xð Þk k1¼ 1.

The disadvantage of using BoF is it only con-

siders the occurrence distribution of words and

ignore the structural relationship between

them, thus decreasing their discrimination. For

geometric shapes, only features of the vertex

are used, which limits their descriptive capabil-

ity. Inspired by Shape Google,7 we use the geo-

desics on the mesh to measure the spatial

relationship between each pair of BoFs on the

vertices. Unlike Shape google, we consider geo-

desic distance instead of heat kernel to avoid

any influence of time scale and shape size, and

we use the GA-BoF:

v Xð Þ ¼ N Xð Þ
X
xi2X

X
xj2X

u xið Þu xj

� �

exp �kgd

gd xi; xj

� �
rgd

� � ð3Þ

where N Xð Þ is a normalization factor that

assigns features a fixed maximum value of 1; rgd

is the maximal geodesic distance of any pair of

vertices on the mesh; and kgd denotes the decay

rate of distances, which is selected empirically.

The resulting v is a K � K matrix, which rep-

resents the frequency of geometric words i and j

appearing within a specified geodesic distance.

This expression provides occurrence probability

of geometric words and the relationship be-

tween them. Moreover, it provides a position-

independent representation of shape, in which

the positional independence denotes that the

middle-level feature is irrelevant to the order of

low-level features or vertices.

View-Based Feature Extraction

The view-based feature extraction for 3D mod-

els in our algorithm follows several steps.

Shape Preprocessing. For a given 3D mesh, we

translate the center of its mass to the origin and

then scale the maximum polar distance of the

points on its surface to one. We don’t perform

rotation normalization but compensate for this

to some extent, as we describe next.

Image Rendering from Multiple Views.

Depth images are rendered from 20 vertices of a

regular dodecahedron with mass center that is

also located in the origin. To make the feature

robust against rotation, we rotate the regular
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dodecahedron 10 times and extract views in

each position. The rotation angle must be set

carefully to ensure that all the cameras are dis-

tributed uniformly and cover different viewing

angles for the 3D model. We use a strategy simi-

lar to the light field descriptor (LFD) to extract

views,8 but unlike LFD, we discard the binary

images and only use the depth images. Hence, a

3D object is represented by 200 depth images of

size 256� 256.

SIFT Feature Extraction. After rendering depth

images, we extract the scale and rotation invari-

ant visual features using the scale invariant fea-

ture transform (SIFT) algorithm. We set all the

parameters of the SIFT algorithm to default,

which produces a feature vector with 128 ele-

ments. The SIFT descriptor is robust against

image noise and illumination changes. More-

over, it is stable under various changes of view-

ing angles,9 which can compensate for the lack

of rotation normalization. In our experiments,

a 3D model is approximately represented with

5,000 to 7,000 SIFT features.

Bag-of-Visual-Features Generation. We code

each SIFT feature extracted from the 3D models

as a visual word by searching for the nearest

neighbor in the vocabulary. Prior to encoding

features, the vocabulary is learned with a

k-means algorithm by clustering the features

collected from every view of every model into

a specified number of words. To obtain satis-

factory discrimination, we set the number of

words from 1,000 to 3,000 in our experiments.

In addition, we randomly chose 50 percent of

the models in each category to generate the vis-

ual vocabulary because of the tremendous com-

puting workload of the clustering process.

After feature encoding, we collect the fre-

quencies of words generated from a model in a

histogram, which becomes a feature vector (the

BoVF) for the 3D model.

Multimodal Feature Data Fusion

The direct way to train a multimodal model for

3D models is to build an RBM or DBN over the

concatenated geometry- and view-based fea-

tures. Because a joint model trained this way is

limited as a shallow model, it is too hard to rep-

resent the highly nonlinear correlations and

different statistical properties between both

modalities. In our work, to associate geometry-

and view-based data comprehensively, we first

extract high-level features from shallow-level

descriptors for each modality. As a result, infor-

mation from a specific modality is weakened

and more information in high-level features

reflects the attributes of the 3D models. In other

words, high-level features remove the modality-

specific information and reserve only the attrib-

utes of the 3D models.

Unlike traditional deep learning methods,

we don’t use raw data as input for the deep

learning structure. For view-based modality,

our strategy for generating view images means

that the order of raw images captured from

views is not directly comparable. Every 3D

model has many postures in the space. The

images captured from the same angle of two

similar shapes might differ significantly. Hence,

it is not suitable to learn high-level features

from raw image data. For geometry-based

modality, because a 3D mesh has a graph struc-

ture, it is difficult to find a beginning position

and make a comparable sequence. Therefore, it

is difficult to learn high-level features from raw

3D shape data.

Because deep learning can extract deep

structural information from features or raw

data,3,10 it is suitable for generating high-level

features that can boost their discrimination

ability. For geometry-based modality features,

the GA-BoF can be regarded as a relationship

matrix, with each entry representing the oc-

currence probability of two geometric words

within a specified geodesic distance. Further-

more, all the shapes have the same size GA-BoFs,

and this feature is invariant to the order and

number of vertices on the mesh. Therefore, it

is appropriate to construct a deep learning

network. For view-based modality features,

however, the BoVFs reflect the visual feature

distribution of view images generated from

each 3D shape and can be treated as input for

deep learning.

The right side of Figure 1 shows the architec-

ture of the suggested multimodal feature fusion.

It contains two modality inputs: GA-BoFs and

BoVFs. Each input is processed by a DBN. At the

top of the DBNs, a RBM is used to learn the joint

representation for the 3D model.

For each DBN, the bottom-layer RBM is

trained with the input data, and the activation

probabilities of hidden units are treated as

input data for training the upper-layer RBM.

The activation probabilities of the second-layer

RBM are then used as the visible data input for

the third-layer RBM and so on. After obtaining

the optimal parameters for each DBN, the
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newly input GA-BoF or BoVF is processed layer

by layer until reaching the final layer. The last

layer’s output, o Xshape

� �
and o Xviewð Þ, is used as

the high-level features for geometry- and view-

based modality.

After these operations, an RBM is used to

associate both modalities. First, high-level fea-

tures for each modality are concatenated as

o Xshape

� �
; o Xviewð Þ

� �
. Next we input o Xshape

� �
;

�
o Xviewð ÞÞ into an RBM to learn a joint represen-

tation o Xjoint

� �
. Because o Xjoint

� �
is generated

from the geometry- and view-based modality

features, it contains both intrinsic properties of

the 3D model itself and extrinsic visual similar-

ity and thus is more discriminative and robust.

For recognition tasks, we perform one-

versus-all classification using Softmax regres-

sion on the learned joint representation. For

the retrieval task, we use L2, the distance of the

joint representation, to measure the similarity

of two shapes, X and Y, as

ds X;Yð Þ ¼ o Xjoint

� �
� o Yjoint

� ��� ��
2
: ð4Þ

Experiments
To assess the proposed method, we use standard

3D shape benchmarks and a mixed dataset to

evaluate classification and retrieval perform-

ance. The mixed dataset has more than 1,400

3D models, which consist of shapes from SHREC

2007, SHREC 2011, and the McGill database.

The whole dataset is divided into 42 categories

and each category contains approximately 10

to 30 meshes. We performed several experi-

ments to select optimal parameters and then

used the optimal parameters to evaluate the

classification and retrieval performance.

To speed up the calculation, we imple-

mented a deep learning toolbox, in which all

matrix operations were carried out on the GPU

using the Cudamat library. (The source code of

our deep learning toolbox is available at https://

github.com/shaoguangcheng/DeepNet.) All experi-

ments were conducted on the platform with

8 Gbytes of memory and an Intel i3 core pro-

cessor. For 400 shapes, the model learning took

about 120 seconds, whereas the recognition

and retrieval cost less than 1 second.

Optimal Parameters Selection

We first decided the optimal parameters for

each modality using geometry- and view-based

features individually to perform shape classifi-

cation. We used average classification accuracy

as the evaluation metric for the following

experiments. The training data was randomly

selected from the SHREC 2007 dataset, and the

remaining data was treated as test data.

In the first experiment, we checked how the

number of words affects performance. For the

geometry-based modality, we set the number to

64, 80, 100, 128, and 160, respectively; Figure 2a

shows the results. For the view-based modality,

we set the number to 500, 750, 1,000, 1,500,

2,000, 2,500, and 3,000 separately; Figure 2b

shows these results. As we can see, a small dic-

tionary size generally leads to lower classifica-

tion accuracy. Although a larger dictionary size
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achieves better performance, the calculation

time increases rapidly, resulting in low compu-

tation performance.

We also needed to select kBoF and kgd for the

geometry-based feature extraction process. In

the second experiment, we used different kBoF,

which controls how closely BoWs are selected

as the BoF to evaluate the classification accu-

racy of training and testing data, using 100

BoWs. The results are plotted in Figure 3a.

Next, we study the effects of using different

kBoF. This parameter indicates the decay rate for

calculating the GA-BoF. Figure 3b shows the

classification accuracy under different kgd.

Based on the results of these experiments,

we selected BoWn ¼ 100, kBoF ¼ 2, and kgd ¼ 10

as optimal parameters for geometry-based fea-

ture extraction, and BoWn ¼ 1;000 for view-

based feature generation. The following experi-

ments were performed with these optimal

parameters.

In our experiments, the number of DBN

nodes and layers are set empirically. The geome-

try-based pathway consists of a Gaussian RBM

with 5,050 visible units followed by two layers

of 5,000 and 2,000 units. (Every 3D shape GA-

BoF is a symmetric matrix, each entry of which

represents the occurrence probability of two

geometric words within a specified geodesic dis-

tance. So if we set BoWn ¼ 100, the number of

unique elements in GA-BoF is 5,050.) The view-

based pathway also consists of a Gaussian RBM

with 1,000 visible units followed by two layers

of 1,000 and 800 units. The joint layer contains

2,800 hidden units.

Experiments on Classification

For the classification experiments, we randomly

selected 50 percent of the models in each

category as training samples and used the re-

maining models as test data. Table 1 lists the

average classification accuracies of the proposed

method and several other approaches on the

SHREC 2007, SHREC 2011, and McGill datasets.

From Table 1, we can clearly conclude

that the proposed multimodal feature fusion

method achieves much better classification per-

formance than using a single modality feature.

This is because the geometry- and view-based

modalities only reflect partial properties of the

3D model. We can obtain more discriminative

power when both different modalities are con-

sidered. Moreover, we also use support vector

machines (SVMs) to perform shape classifica-

tion with the input of concatenated BoVFs and

GA-BoFs. This experiment demonstrates that

the suggested method is superior to the more

common feature fusion approach. Among the

three datasets, the results on SHREC 2011 have

the best performance because the shapes only

contain articulated deformation and the shape

variance is small.

Experiments on Retrieval

For the retrieval task, we used the models

trained in the classification experiments to cal-

culate the joint representation for every 3D
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shape. We obtained the similarity between two

models using Equation 4.

Evaluation Metrics. Six standard evaluation

metrics are used to assess the performance of

the recommended method. They are precision-

recall curve, nearest neighbor (NN), first tier

(FT), second tier (ST), E-measure (E), and dis-

counted cumulative gain (DCG).

Experiments on SHREC 2007. First, we used

the SHREC 2007 dataset to evaluate the pro-

posed method’s retrieval performance. Figure 4

plots the recall-precision curves of some state-

of-the-art approaches and our method. From

the figure, we can clearly see that the suggested

method achieves the best retrieval results over-

all. If we use only a geometry-based modality

feature or a view-based modality feature for the

retrieval experiments, the performance shows

no obvious improvement over its competitors.

This is mainly because a unimodal feature can

merely deliver specific information about a 3D

shape. Because our recommended approach

fuses geometry- and view-based modality infor-

mation, the joint representation contains both

intrinsic properties and extrinsic attributes of

3D models. Using the joint representation

increases the intraclass similarity while reduc-

ing the interclass similarity, and consequently

the retrieval performance is improved.

Table 2 lists the numerical evaluation meas-

ures. As the table shows, the measures are

higher when we use multimodal features than

when we use unimodal features. The average

improvement of the DCG index is 5.07 percent,

which demonstrates that the suggested method

can improve retrieval performance by using

multimodal features. We also find that nearest

neighbor has the least improvement of all the

evaluation indexes. This is mainly because the

nearest neighbor only checks the validity of the

nearest of the retrieval results, whereas our pro-

posed method can ameliorate the whole

retrieval performance.

Experiments on Mixed Dataset. Finally, we

use a mixed 3D shape dataset as testing data to

Table 1. Average classification results of the proposed method and other approaches.

Method

SHREC

2007 (%)

SHREC

2011(%)

McGill

(%)

Only geometry-based modality features 85.00 99.67 90.69

Only view-based modality features 93.00 97.00 89.00

Support vector machine (SVM)

with multimodal features

80.00 92.17 78.51

Proposed method 97.25 99.83 95.54
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Figure 4. Recall-precision curves of some current methods and the proposed

method on SHREC 2007. Using the joint representation increases the

intraclass similarity while reducing the interclass similarity.

Table 2. Retrieval performance of the proposed method using standard

measures on SHREC 2007.*

Method NN (%) FT (%) ST (%) E (%) DCG (%)

Only geometry-based

modality features

83.75 66.81 39.92 56.34 89.91

Only view-based

modality features

95.00 72.10 42.79 60.17 93.41

Proposed method 97.50 83.29 46.28 66.54 96.73

*Nearest neighbor (NN), first tier (FT), second tier (ST), E-measure (E), and
discounted cumulative gain (DCG).
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evaluate the proposed approach’s generaliza-

tion ability and robustness. The mixed dataset

consists of SHREC 2007, SHREC 2011, and

McGill, thus is much more challenging. Figure

5 and Table 3 shows the results. Analyzing these

measure indexes, we find the suggested ap-

proach has the best performance.

Conclusion
To learn the joint representation for 3D shapes,

we propose a novel multimodal feature extrac-

tion and fusion method for 3D shapes. How-

ever, the information carried by each modality

feature is not identical, as the experiments on

the SHREC 2007 dataset demonstrate, where

the view-based modality feature contains more

information than geometry-based modality.

Therefore, it is necessary to model the impor-

tance of different modalities. Moreover, in the

proposed method, features for deep learning

are global, so local information of 3D shapes is

missing. Additionally, the optimal word num-

ber of BoVF and GA-BoF cannot be automati-

cally decided.

Thus far, we have only investigated geometry-

and view-based modalities in our framework.

Although promising results were obtained, we

could achieve better recognition and retrieval

performance by adding other modality fea-

tures, such as sketch-based features. This will be

a subject of our future research. In addition,

to better describe 3D shapes, we will ex-

plore the possibility of combining global

and local features from each modality in our

framework. MM
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