
ISPRS Journal of Photogrammetry and Remote Sensing 89 (2014) 37–48
Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs
Efficient, simultaneous detection of multi-class geospatial targets based
on visual saliency modeling and discriminative learning of sparse coding
0924-2716/$ - see front matter � 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.isprsjprs.2013.12.011

⇑ Corresponding author. Tel./fax: +86 29 88431318.
E-mail address: junweihan2010@gmail.com (J. Han).
Junwei Han ⇑, Peicheng Zhou, Dingwen Zhang, Gong Cheng, Lei Guo, Zhenbao Liu, Shuhui Bu, Jun Wu
Department of Control and Information, School of Automation, Northwestern Polytechnical University, 127 Youyi Xilu, Xi’an 710072, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 June 2013
Received in revised form 11 November 2013
Accepted 26 December 2013
Available online 29 January 2014

Keywords:
Geospatial target detection
Visual saliency
Discriminative sparse coding
Automatic detection of geospatial targets in cluttered scenes is a profound challenge in the field of aerial
and satellite image analysis. In this paper, we propose a novel practical framework enabling efficient and
simultaneous detection of multi-class geospatial targets in remote sensing images (RSI) by the integra-
tion of visual saliency modeling and the discriminative learning of sparse coding. At first, a computational
saliency prediction model is built via learning a direct mapping from a variety of visual features to a
ground truth set of salient objects in geospatial images manually annotated by experts. The output of this
model can predict a small set of target candidate areas. Afterwards, in contrast with typical models that
are trained independently for each class of targets, we train a multi-class object detector that can simul-
taneously localize multiple targets from multiple classes by using discriminative sparse coding. The
Fisher discrimination criterion is incorporated into the learning of a dictionary, which leads to a set of
discriminative sparse coding coefficients having small within-class scatter and big between-class scatter.
Multi-class classification can be therefore achieved by the reconstruction error and discriminative coding
coefficients. Finally, the trained multi-class object detector is applied to those target candidate areas
instead of the entire image in order to classify them into various categories of target, which can signifi-
cantly reduce the cost of traditional exhaustive search. Comprehensive evaluations on a satellite RSI data-
base and comparisons with a number of state-of-the-art approaches demonstrate the effectiveness and
efficiency of the proposed work.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction machine learning methods such as Support Vector Machines
The advance of remote sensing technology has led to the explo-
sive growth of geospatial images in quantity and quality. Espe-
cially, the present high-resolution geospatial images contain rich
visual information to describe the surface appearance of the earth.
It has necessitated study into automatic analysis and understand-
ing of visual content to acquire useful information. A fundamental
aspect of this research is target detection, which can be specifically
defined as the problem of ‘‘Does an image window at a certain
location contain a given target?’’

Target detection in geospatial images has been extensively
studied in recent years. Many approaches cast target detection as
a classification problem. A set of features that can characterize
the targets is extracted first, and then classification is performed
using the extracted features and predefined classifiers. The estab-
lishment of the classifiers can be based on template matching
(Akçay and Aksoy, 2008; Li et al., 2010b, 2012; Sirmaçek and Ünsa-
lan, 2009, 2010) or direct application of a variety of sophisticated
(SVM) (Bi et al., 2012; Cheng et al., 2013; Li et al., 2010a; Li and Itti,
2011; Sun et al., 2012; Tao et al., 2011), Kernel-Based Density Esti-
mation (Sirmaçek and Ünsalan, 2011), Gaussian Mixture Models
(Bhagavathy and Manjunath, 2006), Hough Forests (Lei et al.,
2012), Latent Dirichlet Allocation models (Sun et al., 2010b), and
Support Tensor Machines (Zhang et al., 2011). According to the fea-
ture types used in the models, geospatial target detectors can be
briefly categorized into two broad groups: frequency/transforma-
tion domain feature-based and spatial domain feature-based. Li
et al. (2010b) adopted the ridgelet transform to detect straight road
edges. Tello et al. (2005) proposed to detect ships in synthetic aper-
ture radar (SAR) images using the discrete wavelet transform. Bha-
gavathy and Manjunath (2006) developed a system to detect the
presence of geospatial objects such as harbors, golf courses, and
parking lots by means of detecting spatially recurrent patterns that
are characterized by the Gabor filters. Sirmaçek and Ünsalan
(2010) and Li et al. (2010a) also leveraged Gabor filters to obtain
local feature points to detect the urban areas and buildings. Zhang
et al. (2011) incorporated the spatial relationship of neighboring
pixels into the textural feature modeled by Gabor functions to de-
tect targets. Another group of approaches extracted features in the
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spatial domain because spatial analysis is adequate to describe the
structure and layout of geospatial targets. Some other approaches
extracted spatial features based on segmented regions. For exam-
ple, Akçay and Aksoy (2008) proposed a new method to detect geo-
spatial objects using multiple hierarchical segmentations by
combining spectral information with structure information. The
works of Bi et al. (2012), Li et al. (2012) and Sun et al. (2010b) uti-
lized the spatial contextual information of segmented regions to
achieve promising detection results. Recently, local invariant fea-
tures with the powerful ability of characterizing target structural
features have been successfully applied to geospatial object detec-
tion. To be specific, Tao et al. (2011) described airports by a set of
scale-invariant feature transform (SIFT) keypoints. Xu et al. (2010)
applied the visual Bag-of-Words (BoW) model to describe and clas-
sify geospatial objects. Sun et al. (2012) built the Spatial Bag-of-
Words model by incorporating the geometric information of the
targets into the clustering of SIFT points to represent targets. The
detection was achieved based on the SVM training.

Although the topic of geospatial target detection has been deeply
investigated, less concern has been given to two critical problems.
The first problem is the multi-class target detection. Generally, a
geospatial image contains multiple classes of interesting targets in-
stead of only a single one. Currently, most of target detection meth-
ods still utilize individual class detectors, for example, a detector
only for airplanes, another only for ships, etc. The multi-class target
detection means to directly, simply, and subsequently apply those
independent detectors. However, this approach may not be success-
ful due to the following two reasons. First, the features extracted in
many existing individual detectors are customized for the particular
type of targets, which are not able to generate generally good results
across different categories of targets. This group of approaches is also
not scalable towards large numbers of target classes. More impor-
tantly, these traditional approaches typically train a binary classifier
for each class of targets independently, which loses the discrimina-
tive information hidden in various classes of targets. Therefore, it
is of great significance to develop a unified framework that can auto-
matically identify multiple classes of targets simultaneously.

The current remote sensing technology makes more and more
large scene geospatial images readily available. The second prob-
lem needed to be solved urgently is to rapidly localize targets in
these images using limited computational resources. Many con-
ventional methods (Lei et al., 2012; Li and Itti, 2011; Sun et al.,
2012; Zhang et al., 2011) scan over the entire image to detect tar-
gets and require equal computational time to process each loca-
tion. This exhaustive search is time-consuming. Some approaches
adopt segmented regions rather than individual pixels as the basic
unit for target detection, which may reduce the computational cost
to some extent. Nevertheless, in this case, the performance of tar-
get detection significantly depends on the segmentation results.
Image segmentation is still a challenging problem in the computer
vision field and it is difficult to find a segmentation algorithm that
can deal with all different targets with various appearances effec-
tively in complicated geospatial images.

Human visual attention is a cognitive procedure which can rap-
idly select a small set of highly informative or visually salient ob-
jects from a scene for further detailed processing such as object
recognition while removing redundant information. Inspired by
the human visual attention mechanism, this paper presents a
practical framework for efficient and simultaneous detection of
multi-class target in geospatial images by the integration of a com-
putational attention model and discriminative learning of sparse
coding. As illustrated in Fig. 1, the proposed framework consists
of two major components: a learning-based saliency prediction
model and a discriminative sparse coding-based multi-class target
detection model. In the former model, a set of visual features
which are believed to direct attention is calculated first. Subse-
quently, the optimal combination of various visual features is
learned via a direct mapping from these features to an expert-la-
beled ground truth set of salient objects, which results in a compu-
tational model. The computational model is then combined with a
simple image segmentation approach to predict a small set of tar-
get candidate areas (or regions of interest, ROI) for a given geospa-
tial image. To the best of our knowledge, this ground truth dataset
is among the earliest datasets to be used to investigate visual sal-
iency modeling in the field of RSI analysis. In the second compo-
nent, we train the multi-class object detector by incorporating
the Fisher discrimination criterion into the dictionary learning of
sparse coding. This yields a set of coding coefficients by minimizing
their within-class distribution but maximizing their between-class
distribution. In the target detection procedure, the trained multi-
class classifier is integrated with a multi-scale scanning window
mechanism to classify each location in target candidate areas, in-
stead of the entire image, into various categories of targets.

The rest of the paper is organized as follows. Section 2 describes
the learning based saliency prediction model. Section 3 presents
the multi-class target detection based on the discriminative learn-
ing of sparse coding. Section 4 reports evaluation results. Finally,
conclusions are drawn in Section 5.
2. Learning-based saliency prediction model

The guidance of visual attention can facilitate humans to detect
and recognize meaningful targets rapidly. Computational saliency
models aimed at quantitatively predicting the importance of each
location in the image has been extensively studied. These models
(Achanta et al., 2008, 2009; Borji, 2012; Han et al., 2006, 2011;
Harel et al., 2006; Hou and Zhang, 2007; Itti et al., 1998; Judd
et al., 2009; Zhang et al., 2008) generally assume that locations
in the visual field that are distinctive from their contextual back-
ground are more likely to be interesting objects and applied con-
trast features to modulate the distinctiveness.

The saliency map can be applied to predict locations of the po-
tential candidate targets because targets are generally distinctive
from the contextual background. However, most existing saliency
detection approaches (Achanta et al., 2008, 2009; Borji, 2012; Han
et al., 2006, 2011; Harel et al., 2006; Hou and Zhang, 2007; Itti
et al., 1998; Judd et al., 2009; Zhang et al., 2008) were developed
for natural images instead of RSIs. In real optical satellite scenes,
many geospatial objects such as airports, rivers, and bridges, are
also conspicuous from their surroundings, which indicates that
computational visual attention models can be used to predict candi-
date targets. Lately, a few works (Bi et al., 2012; Li and Itti, 2011; Sun
et al., 2010a) which applied the attention features or models to RSI
analysis have been published. For instance, Li and Itti (2011) com-
bined saliency features and gist features for classifying small image
chips. Bi et al. (2012) and Sun et al. (2010a) directly applied existing
saliency models generated for natural images to detect ships (Bi
et al., 2012) and salient regions (Sun et al., 2010a) from satellite
images, respectively. These previous works have demonstrated
the feasibility of using visual saliency models for RSI analysis.

Inspired by Judd et al. (2009) and Borji (2012), this paper pro-
poses a supervised learning-based saliency model for prediction
of target candidate areas in RSIs. This model consists of four com-
ponents. At first, a ground truth database that contains salient tar-
gets in each RSI is manually constructed. To the best of our
knowledge, our ground truth is among the earliest benchmarks
for exploring visual saliency for RSIs. Second, a set of visual fea-
tures, which have already been demonstrated to be powerful by
the best existing saliency models, is calculated. Third, a supervised
learning model by training classifiers directly from human-labeled
ground truth data is yielded to form a saliency map. Finally, an



Fig. 1. The architecture of the proposed multi-class geospatial target detection framework.
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adaptive algorithm is used to binarize the saliency map and predict
the potential target locations.
2.1. Ground truth construction

150 satellite RSIs with the size of 1000 � 800 are collected from
the publicly available Google Earth service. The spatial resolution
of these images ranges from 0.5 m/pixel to 2 m/pixel. Three human
subjects, who are experts in RSI processing are asked to view each
image and specify salient targets, which are meaningful to repre-
sent this image. A voting strategy is taken by multiple subjects to
reduce the labeling inconsistency. After the salient targets in each
image are decided, the experts manually draw an accurate contour
for each target. The ground truth database of 150 images is thus
generated. Fig. 2 shows a number of samples from this database.
2.2. Visual features

For each RSI, the low- and mid-level features are extracted for
every pixel to train the computational saliency model. These fea-
tures have already been demonstrated by previous works (Achanta
et al., 2008, 2009; Borji, 2012; Han et al., 2006, 2011; Harel et al.,
2006; Hou and Zhang, 2007; Itti et al., 1998; Judd et al., 2009;
Zhang et al., 2008) to correlate with visual saliency or be biologi-
cally plausible.
2.2.1. Low-level features
Given a pixel Ii(Ri, Gi, Bi), the following low-level features are in-

cluded in our feature vector fi. Here, Ri, Gi, Bi are the values of the
red, green, and blue colors.
Fig. 2. A number of samples (the top row) with their corresponding ground truth data (th
salient targets.
(1) Local contrast of intensity, orientation, and color, ICi, OCi, CCi :
these features were originally developed by Itti et al. (1998)
and played a critical role in modeling saliency. At first, one
intensity and four color channels are generated based on Ri, -
Gi, Bi. Four orientation channels in f0�;45�;90�;135�g are
calculated using Gabor filters upon the intensity of image.
Afterwards, for each of these feature channels, nine spatial
scales from scale 0 to scale 8 are produced using dyadic
Gaussian pyramids, which progressively subsample the ori-
ginal image. Then, the center-surround operator is calcu-
lated by the difference between fine and coarse scales. In
total, 6, 12, and 24 center-surround difference maps are
obtained for intensity, color, and orientation channels,
respectively. These maps are normalized and linearly com-
bined into 3 overall contrasts of intensity, color, and orienta-
tion. In summary, these three features are derived from the
rarity of a location with respect to its local neighborhoods,
which indicate the local contrast.

(2) Color values in red, green, and blue color channels, Ri, Gi, Bi,
as suggested by Judd et al. (2009).

(3) Global color contrast by measuring the rarity of a pixel’s
color with respect to the entire image. By following Judd
et al. (2009), five global color contrast features are formed
based on the probability of each color estimated using color
histograms.

2.2.2. Mid-level features
The outputs of five state-of-the-art saliency models, GBVS

(Graph-based visual saliency) (Harel et al., 2006), SDS (Salient re-
gion detection and segmentation) (Achanta et al., 2008), WSCR
(Bottom-up saliency based on weighted sparse coding residual)
(Han et al., 2011), SR (Saliency detection: A spectral residual ap-
proach) (Hou and Zhang, 2007), and FT (Frequency-tuned salient
e bottom row). In the ground truth data, the pixels in white form the expert labeled
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region detection) (Achanta et al., 2009) are utilized as the mid-le-
vel features in our work. These models are selected for several rea-
sons, for example, they explain and characterize saliency using
various mechanisms, they are fast, and they have achieved out-
standing performance in predicting saliency in natural images.

Overall, the feature vector, fi, of the pixel Ii, can be represented
as f i ¼ ðICi;OCi;CCi;Ri;Gi;Bi; P

1
i ; P

2
i ; P

3
i ; P

4
i ; P

5
i ;GBi; SRi; SDi; FTi;WSiÞ.

Here, GBi is derived from the GBVS model (Harel et al., 2006), SDi

is derived from the SDS model (Achanta et al., 2008), WSi is derived
from the WSCR model (Han et al., 2011), SRi is derived from the SR
model (Hou and Zhang, 2007), and FTi is derived from the FT model
(Achanta et al., 2009). An image example and its corresponding
feature maps are shown in Fig. 3.

2.3. Learning model

In contrast to previous saliency models that fuse various visual
features using a set of fixed weights, we adopt a probabilistic mod-
el via direct learning from human labeled ground truth. Essentially,
the learning is able to optimize the feature weights and maximize
the correlation between the features and salient targets in the
ground truth.

Given a pixel Ii located at (xi, yi) with the feature vector fi, we as-
sume the binary random variables, T, L, F, indicate whether or not a
pixel belongs to the salient target, the location of a pixel, and the
visual features of a pixel, respectively. Here, i = 1, 2, . . ., N and N
is the total number of pixels in the image. The variable T can be de-
scribed as:

T ¼
1 if Ii belongs to the salient target
0 otherwise

�
ð1Þ

Inspired by Zhang et al. (2008), the saliency of Ii can be defined
as a posterior probability as follows:

Si ¼ PrðTjF ¼ f i; L ¼ ðxi; yiÞÞ ð2Þ

According to Bayes’ rule:

Si ¼ PrðTjF ¼ f i; L ¼ ðxi; yiÞÞ ¼
PrðF ¼ f i; L ¼ ðxi; yiÞjTÞPrðTÞ

PrðF ¼ f i; L ¼ ðxi; yiÞÞ
ð3Þ

It is reasonable to assume F and L are independent and condi-
tionally independent given T. Therefore, Eq. (3) can be rewritten as:

Si ¼
PrðF ¼ f i;L¼ ðxi;yiÞjTÞPrðTÞ

PrðF ¼ f i;L¼ ðxi;yiÞÞ
¼ PrðF ¼ f ijTÞPrðL¼ ðxi;yiÞjTÞPrðTÞ

PrðF ¼ f iÞPrðL¼ ðxi;yiÞÞ

¼ PrðTjF ¼ f iÞ
PrðTjL¼ ðxi;yiÞÞ

PrðTÞ / PrðTjF ¼ f iÞPrðTjL¼ ðxi;yiÞÞ ð4Þ
Fig. 3. An example of a RSI and its corresponding feature maps. Low-level features are sh
median filter). Mid-level features are shown in the last two columns.
In traditional saliency models for natural images, the location
prior, Pr (T|L = (xi, yi)), is often assumed to be biased towards the
image center because photographers take pictures with a strong
tendency to put interesting objects close to the center. However,
there is basically no center bias in RSIs. We therefore can assume
that there is no prior information on the location of targets and
the term of Pr (T|L = (xi, yi)) can be ignored in Eq. (4). The saliency
of the pixel Ii can be estimated by the posterior probability as:

Si / PrðTjF ¼ f iÞ ð5Þ

In our model, we approximate Pr (T|F = fi) via learning a classi-
fier from the manually labeled ground truth described in Sec-
tion 2.1. Due to its outstanding performance, we adopted a
liblinear SVM to train the classifier.

During the training stage, in each training image we randomly
select 400 positively labeled pixels from the salient targets of the
ground truth map and 500 negatively labeled pixels from the rest
of the ground truth map. All visual features are normalized to [0,1].
For a testing example, Ii, rather than adopting the predicted labels
(sgn(wTfi + b), where w, b are parameters in the SVM), the value of
wTfi + b is used to approximate Pr (T|F = fi), which results in a con-
tinuous saliency map.
2.4. Segmentation of target candidate areas

The continuous saliency map obtained in the above subsection
can quantitatively predict the likelihood that each pixel belongs to
the potential salient targets. We subsequently integrate the sal-
iency map and the image segmentation technique to segment tar-
get candidate areas from RSIs. This paper follows an elegant
algorithm proposed by Achanta et al. (2008, 2009). Firstly, the
mean-shift segmentation in Lab color space is applied to segment
the image into small regions. Secondly, those regions whose aver-
age saliency is greater than a threshold are retained as the poten-
tial target areas. The threshold G, is adaptively determined based
on the image saliency (Achanta et al., 2009):
G ¼ 1:6
N

XN

i¼1

Si ð6Þ

where Si is the saliency value of a pixel and N is the total number of
pixels in an image, respectively. In this work, our target detection
does not largely rely on the salient region segmentation. Therefore,
the simple and fast segmentation approach can be used in our work.
own from the second column to the fifth column (m indicates the scale of the used
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3. Multi-class geospatial target detection

3.1. Problem formulation

The multi-class target detection in an image can be formulated
as the issue of determining if the multi-scale windows at each loca-
tion of the image contain one of a number of predefined classes of
objects. The multi-scale window mechanism is adopted here to
deal with the problem of target scale variation. We suppose a win-
dow be represented as W

rj

ðxi ;yiÞ and grj

ðxi ;yiÞ be its corresponding fea-
ture vector. Here, (xi, yi), i = 1, 2, . . ., N and rj, j = 1, 2, . . ., M
indicate the center and scale of the window, respectively. Assume
we have C object models X = {up, p = 1, . . ., C}, and each of them
corresponds to an object class. Suppose oi e {0, 1, . . ., C} be the ob-
ject label at the location (xi, yi) (the 0 label indicates the back-
ground). oi can be achieved via maximizing the following
probability:

ðp̂; ĵÞ ¼ arg max
j;p

PrðX¼ f/p : p¼ 1;2; . . . ;Cgjfgrj
ðxi ;yiÞ : j¼ 1;2; . . . ;MgÞ

oi ¼ p̂

ð7Þ

The scale of the detected object at (xi, yi) is W
rĵ
ðxi ;yiÞ.

3.2. Discriminative classifier using sparse coding

One key issue is to design the classifier for multi-class object
detection. In this paper, we adopt the sparse representation-based
classification (SRC) algorithm. We select the SRC algorithm for the
following two reasons. First, it is one of the state-of-the-art
approaches for classification and has been successfully applied to
tasks such as face recognition (Mairal et al., 2008; Wright et al.,
2009; Yang et al., 2011), digit and texture classification (Mairal
et al., 2008; Yang et al., 2011), and image denoising. Recently, a
few efforts have been devoted to apply SRC to target detection in
RSI. For example, Chen et al. (2011) proposed a method for target
detection in hyperspectral imagery based on sparse representation,
which exploits the sparsity constraint, reconstruction error and the
neighboring pixels that have similar spectral attributes. Sun et al.
(2012) integrated sparse coding and BoW model to detect airports
in RSIs. In this paper, we attempt to explore the feasibility of leverag-
ing SRC for multi-class target detection in RSIs. Second, many tradi-
tional single-class target detectors still rely on the capability of their
extracted features. Normally, the features used in one detector work
effectively only for a specific target and may not be powerful enough
to tackle other types of targets. This problem limits the usage of these
detectors to multi-class target detection. Nevertheless, as demon-
strated in Wright et al. (2009), the theory of compressed sensing
implies that the performance of the SRC algorithm does not depend
on powerful features. Moreover, SRC algorithm is robust to occlusion
(Wright et al., 2009). These properties make the SRC appropriate
for the task of multi-class geospatial target detection.

The basic assumption of SRC algorithm is that a high-dimen-
sional image can be described by a few representative atoms of a
learned dictionary in a low-dimensional manifold. The classical
SRC algorithm can be used to solve the multi-class classification
problem as follows. Given a set of training samples X = [X1, . . ., Xp, -
. . ., XC], where Xp is the subset of the training samples from class p,
sparse representations of these data can be addressed by solving
the following minimization problem:

min
D;a
jjX� Dajj22 þ gjjajj1 ð8Þ

Here, D = [D1, . . ., Dp, . . ., DC] is an over-complete dictionary to
be learned, where Dp is a sub-dictionary associated with the pth
class, and a is the coding coefficients. In Eq. (8), ||X - Da||2 adopts
the ‘2 norm to measure the reconstruction error, ||a||1 is the
sparsity penalty based on ‘1 norm, and g is a constant. To classify
a testing data x̂, we firstly sparsely code it by Wright et al. (2009)

â ¼ arg min
a

jjx̂� Dajj22 þ gjjajj1 ð9Þ

Afterwards, the residuals (or the reconstruction errors) are
computed by

epðx̂Þ ¼ jjx̂� Dpâpjj2 ð10Þ

where âp is the coefficient vector associated with the pth class. Fi-
nally, x̂ is classified to the class with arg min

p
epðx̂Þ.

For the multi-class classification, the discriminative information
hidden in various categories of targets is potentially useful, which
is ignored by the original SRC algorithm. In this paper, we basically
follow Mairal et al. (2008) and Yang et al. (2011) and develop a
multi-class classifier by incorporating discriminative information
into the dictionary learning of SRC. The objective function in Eq.
(8) can be improved as (Yang et al., 2011):

min
D;a
fDREðD;X;aÞ þ k1CSðaÞ þ k2CDðaÞg ð11Þ

where DRE(D, X, a) is discriminative reconstruction error, CS(a) is
coefficient sparsity, CD(a) is coefficient discrimination, and k1 and
k2 are constants.

The discriminative reconstruction error aims to fulfill three
objectives simultaneously. First, the dictionary D can represent
the training samples X well. Second, the sub-dictionary Dp can well
represent the samples Xp from the same class. Third, the sub-dic-
tionary Dp is not able to well represent the samples Xq, q – p from
the different classes. Overall, DRE(D, X, a) is defined as:

DREðD;X;aÞ ¼ jjX� Dajj2F þ
XC

p¼1

jjXp � Dpa
p
pjj

2
F

þ
XC

p¼1

XC

q¼1;q–p

jjDqa
q
pjj

2
F ð12Þ

where aq
p is the coding coefficient of Xp over Dq, and ||�||F denotes

the Frobenius norm.
The second term, CS(a), in Eq. (11) is defined by following the

classical SRC algorithm as ||a||1 (Wright et al., 2009). The coeffi-
cient discrimination, CD(a), is based on the assumption the coding
coefficients are discriminative across various classes. Following
Yang et al. (2011), we adopt the Fisher discrimination criterion to
define CD(a):

CDðaÞ ¼ trðSWðaÞÞ � trðSBðaÞÞ þ k3jjajj2F

SWðaÞ ¼
XC

p¼1

X
ap;k2ap

ðap;k � �apÞðap;k � �apÞT

SBðaÞ ¼
XC

p¼1

npð�ap � �aÞð�ap � �aÞT

ð13Þ

where tr(�) is the trace operator, �ap and �a are the mean vector of ap

and a respectively, np is the number of samples in the pth class, and
jjajj2F is an elastic term to make CD(a) convex. The minimization of
CD(a) can basically lead to minimizing the within-class scatter of
coding coefficients SW(a), and maximizing the between-class scat-
ter of coding coefficients SB(a), simultaneously.

Similar to Mairal et al. (2008) and Yang et al. (2011), we optimize
the objective function in Eq. (11) by iterating between updating D
while fixing a and updating a while fixing D. In brief, the following
four steps are performed for the optimization. First, all the atoms of
each Dp are initialized as random vectors having unit ‘2 norm.
Second, we fix D and compute the sparse coding coefficients
ap, p = 1, . . ., C, class by class, by optimizing the objective function:



Fig. 4. A number of training samples.
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min
ap

DREðD;Xp;apÞ þ k1CSðapÞ
�

þ k2 kap � Apk2
F �

XC

k¼1

kAk � Ak2
F þ k3kapk2

F

 !)
ð14Þ

where Ak and A denote the mean vector matrices of class k,
k = 1, . . ., C, and all classes, respectively. They can be obtained
by taking nk mean vectors �ak and �a as their column vectors.
Third, we fix a and update each Dp by optimizing the objective
function:

min
Dp

kX� Dpa
p �

XC

q¼1;q–p

Dqa
qk2

F þ kXp � Dpa
p
pk

2
F þ

XC

q¼1;q–p

kDpa
p
qk

2
F

( )

ð15Þ

where ap is the coding coefficients of X over Dp. Fourth, the second
and third steps are repeated until the convergence or the maximum
number of iterations is achieved.

3.3. Target detector training

We build the geospatial target detector based on the multi-class
classifier described in Section 3.2. In principle, we can build a
detector to detect a large number of various categories of geospa-
tial targets. In this paper, our experiment focuses on the evaluation
of the detector using four different categories of targets: airplanes,
ships, storage tanks, and baseball diamonds. These targets are gen-
erally important targets in satellite images. In geospatial target
detection, target orientation variation and scale variation are two
nontrivial issues. However, the discriminative sparse coding-based
classifier actually does not take into account these two issues in
theory. We therefore deal with them in the classifier training and
target detection stages. In the training stage, training images are
downloaded from Google Earth. In these images, a human expert
manually labeled targets using the bounding box. The labeled tar-
gets are utilized as the samples for training the detector. To deal
with the problem of the target orientation variation, our idea is
to collect training samples with various orientations. For each
manually labeled target sample, we firstly rotate it in the step of
10� within a range, which results in another a number of training
samples. Specifically, for the sample of airplane and baseball dia-
mond targets, the range for rotation is between 0� and 360�. For
the sample of ship targets, the range for rotation is between 0�
and 180� because their shape has bilaterally symmetry. For the
sample of storage tank targets, it is unnecessary to perform the
rotation because their shape is a circle. In this way, we can collect
36, 18, 1, 36 training samples for each manually labeled sample of
airplane, ship, storage tank and baseball diamond, respectively.
Afterwards, we firstly smooth all training samples using a Gaussian
low pass filter and down-sample them from their original scale to a
uniform scale. In our current implementation, the uniform scale is
empirically set to 19 � 19 that will be described in Section 4.2.
Fig. 4 shows a number of training examples.

The pixel gray values of each training sample of size 19 � 19 are
then normalized to have unit ‘2 norm and concatenated to form a
361-D features. Feature vectors of training samples from the same
class are stacked as columns of the matrix X. The discriminative
dictionary is learned via the optimization of Eq. (11), which even-
tually forms the multi-class classifier. Fig. 5 shows the learned dic-
tionary for classifying airplanes, ships, storage tanks, and baseball
diamonds.

3.4. Target detection

Given a test image, we firstly apply the learned saliency model
described in Section 2 to predict candidate locations that
potentially contain targets. Afterwards, we adopt multi-scale slid-
ing windows to scan the image over candidate locations and deter-
mine if these windows contain those predefined classes of targets.
The multi-scale windows can deal with the problem of target scale
variation. By following the problem formulation described in Sec-
tion 3.1, we assume the multi-scale windows at the location (xi, yi)
be represented as W

rj

ðxi ;yiÞ. Similar to the training stage, we smooth
all W

rj
ðxi ;yiÞ using a Gaussian low pass filter and down-sample them

from their original scale to the uniform scale of 19 � 19. The unit ‘2

norm normalized pixel values in each down-sampled window form
a 361-D feature vector grj

ðxi ;yiÞ. Afterwards, grj

ðxi ;yiÞ is encoded by the
trained dictionary D in terms of:

â ¼ arg min
a

jjgrj
ðxi ;yiÞ � Dajj22 þ gjjajj1 ð16Þ

Then, the classification metric (Yang et al., 2011) with respect to
each target class p is finally defined based on the reconstruction er-
ror and the distance between the encoding coefficients and the
coefficient mean of the pth class:

epðg
rj

ðxi ;yiÞÞ ¼ jjg
rj

ðxi ;yiÞ � Dpâpjj22 þ k4jjâ� �apjj22 ð17Þ

where k4 is the trade off weight.
For each location (xi, yi) in the image, we can use epðg

rj
ðxi ;yiÞÞ to

approximate PrðX ¼ f/p : p ¼ 1;2; . . . ;Cgjfgrj

ðxi ;yiÞ : j ¼ 1;2; . . . ;MgÞ
in practice. Therefore, we calculate:

ðp̂; ĵÞ ¼ arg min
p;j

fepðg
rj

ðxi ;yiÞÞ : p ¼ 1;2; . . . ;C; j ¼ 1;2; . . . ;Mg ð18Þ

If ep̂ðg
rĵ

ðxi ;yiÞÞ > s (s is a predefined threshold), we decide that the
location (xi, yi) is the background. Otherwise, we detect the p̂th class

of target at (xi, yi) with the scale of W
rĵ

ðxi ;yiÞ. Fig. 6 shows a number of
detection examples. As can be seen, the coefficient vectors of four
targets are sparse including a small number of nonzero entries
whereas the coefficient vector of background is relatively dense
including many nonzero entries. These illustrations imply that the
sparsity of coefficients is a discriminative attribute for the
classification.

In practice, a target may be successfully detected by a couple of
windows with different scales or slightly different locations. A



Fig. 5. The learned discriminative dictionary for the targets of airplanes, ships, and storage tanks, and baseball diamonds.
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post-processing procedure called non-minimum suppression is
used to reduce false positives. Specifically, we sort all scan win-

dows in ascending order based on their corresponding ep̂ðg
rĵ
ðxi ;yiÞÞ

and greedily select the windows with the lowest ep̂ðg
rĵ
ðxi ;yiÞÞ. The

windows which are at least 50% covered by any previously selected
windows are eliminated.
4. Experimental results

4.1. Experimental setup

In theory, the proposed multi-class target detection framework
can detect arbitrary number of classes of geospatial targets. How-
ever, in our experiments, we used the task of detection of four var-
ious types of targets to evaluate the performance of the proposed
work. These four classes of targets are airplanes, ships, storage
tanks, and baseball diamonds. We collected 400 high resolution
RSIs from Google Earth for our evaluations. The resolution of these
images is 1000 by 800 pixels and a majority of these images con-
tain at least one type of targets we intend to detect. The spatial res-
olution of these images ranges from 0.5 m/pixel to 2 m/pixel. We
separated these images into three independent sets: the set con-
taining 150 images for testing saliency models, the set containing
43 images for training the multi-class target detector, and the set
containing 207 images for testing the performance of the target
detector. From those 43 training images, we labeled 21 airplane
samples, 21 ship samples, 21 storage tank samples, and 21 baseball
diamond samples. To deal with the orientation variance problem,
we rotated each sample as described in Section 3.3 and finally
we collected 756 airplanes, 378 ships, 21 storage tanks, and 756
baseball diamonds as the training samples in total. The testing
set contains 756 airplane targets, 295 ship targets, 1876 storage
tank targets, and 106 baseball diamond targets. The sizes of the
targets in the testing images vary from 30 � 30 to 150 � 150 pixels
approximately. In our developed framework, there are some criti-
cal parameters including g, k1, k2, k3, k4, which have important ef-
fect on the performance of the proposed approach. We trained a set
of different classifiers by using different values of k1, k2 and k3, and
then we evaluated how the trained classifiers affected the detec-
tion performance by varying the values of g and k4. According to
our experiment, these parameters influenced the detection perfor-
mance moderately and the best performance was achieved when
g = 0.15, k1 ¼ 0:005, k2 ¼ 0:05, k3 ¼ 1 and k4 ¼ 0:5. Consequently,
we empirically used these optimal parameters in our all subse-
quent evaluations.
4.2. Parameter analysis

In the proposed framework, the dictionary plays an important
role in deciding the overall detection performance. There are two
critical parameters that influence the dictionary construction and
determine the size of the dictionary. One is the uniform scale de-
scribed in Section 3.3 and the other is the number of training sam-
ples. We conducted an experiment to analyze how detection
performance is affected by the values of these two parameters.
30 RSIs randomly selected from our testing database were used
in this experiment. We varied the values of these two parameters
and adopted the average precision (AP) to quantitatively evaluate
the target detection performance. AP is a standard metric for object
detector evaluation, which calculates the area under the precision-
recall curve (PRC). The details on PRC will be provided in Sec-
tion 4.4. The evaluation results are listed in Table 1. As can be seen,
these two parameters influence the detection performance moder-
ately and the best performance was achieved when uniform scale
is set to 19 � 19 and the number of training samples is set to



Fig. 6. A number of detection examples. (a) Testing examples; (b) down-sampled examples; (c) encoding coefficients on the learned dictionary; (d) classification metrics with
respect to each target class.

Table 1
The effect of dictionary size on detection performance (the underlined values denote
the most appropriate parameters and the best result).

Uniform scale The number of training samples AP

11 � 11 910 0.6754
11 � 11 1365 0.6474
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1365 (540 airplane samples, 270 ship samples, 15 storage tank
samples, and 540 baseball diamond samples). Consequently, we
empirically set uniform scale as 19 � 19 and the number of train-
ing samples as 1365 in dictionary construction, which results in a
dictionary with the size of 361 � 1365. We also used this dictio-
nary size in our all following evaluations.
11 � 11 1820 0.6433
15 � 15 910 0.7031
15 � 15 1365 0.6527
15 � 15 1820 0.7173
19 � 19 910 0.6837

19 � 19 1365 0.7680
19 � 19 1820 0.7321
4.3. Evaluation of saliency prediction model

In our work, we proposed a saliency prediction model to yield
the saliency map for each RSI based on the assumption that targets
are generally distinctive from the contextual background. After-
wards, the segmentation was performed on the saliency map to
estimate the potential target locations. To learn and evaluate our
saliency prediction model, we collected 150 high resolution satel-
lite images from Google Earth. As we described in 2.1, the ground
truth dataset was manually built. 130 images were randomly se-
lected as the training data to learn the model and the remaining
20 images were adopted as the test data to evaluate the model
performance. We also compared the proposed model with two
state-of-the-art models called FT (Achanta et al., 2009) and WSCR
(Han et al., 2011). Fig. 7 shows a number of saliency maps and their
corresponding segmentation results by using the three different
models. As can be seen, the segmentation results based on our sal-
iency prediction model basically can precisely provide the infor-
mative regions and candidate locations that contain targets.
Although the two other methods can also generate quite good
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segmentation results which contain those targets, they obtain
much more false positives compared with our method. It implies
that the subsequent target detection on these results has to be per-
formed over larger areas, which will take much time and thus sig-
nificantly limit the efficiency.

We also constructed two quantitative evaluations to test the
proposed saliency prediction model. The first evaluation is to test
the performance of the saliency map. We repeated the above eval-
uation (130 randomly selected images as training data and other
20 images as testing data) five times and calculated the average
true positive rates (TPR) and false positive rates (FPR). Similar to
most previous works on visual saliency models, we adopted the
Receiver Operating Characteristic (ROC) curve and the Area Under
the ROC Curve (AUC) as the metrics. Given a saliency map with sal-
iency values in the range [0,255], we threshold the saliency map at
a threshold Th within [0,255] to obtain a binary mask for the sali-
ent object. To quantitatively compare the performance of various
saliency maps, the threshold Th is varied from 0 to 255 and the
FPR and the TPR are computed at each value of Th, which results
in the ROC. Here, the FPR and TPR were computed by comparing
each pixel in the binarized saliency map against the ground truth.
The FPR measures the fraction of negative examples that are falsely
classified as positive examples whereas the TPR measures the frac-
tion of positive examples that are correctly classified. The bigger
AUC value indicates the better performance of the saliency map.
Fig. 8 shows the comparison ROCs and their corresponding AUCs
denoted in parentheses. As can been seen from Fig. 8, the proposed
saliency model is better than other two state-of-the-art models
(Achanta et al., 2009; Han et al., 2011).

The purpose of our saliency prediction model is to provide the
target candidates for the subsequent target detector. In our model,
we perform the segmentation on the saliency map and the seg-
mented areas are considered as the target candidate areas. Our sec-
ond experiment is to evaluate the performance of predicted results.
We expect that the segmented target candidate areas are as small
as possible while they contain as many as possible true targets. As
a result, we use two metrics to measure the performance. One met-
ric is called potential recall, which measures the percentage that
Fig. 7. A number of saliency maps and their corresponding segmentation results by using
column indicate the meaningful geospatial targets contained in the corresponding RSIs.
targets to be detected are contained in the segmented candidate
areas. A target is regarded as ‘‘contained’’ when its center falls in
the segmented candidate areas. The other metric is called
prediction area rate, which measures the percentage of the pre-
dicted target candidate areas over the entire image size. The smal-
ler prediction area rate generally leads to the higher efficiency of
the subsequent detection. Table 2 lists the recalls and the predic-
tion area rates obtained in terms of different methods. As can be
seen from the comparison results, the proposed prediction model
can achieve the highest recall and the smallest prediction area rate.
Although the model of Han et al. (2011) also can provide quite
good results in predicting target candidates, its segmented area is
much bigger than that generated by our model, thus its detection
takes much longer time than ours.

4.4. Evaluation of target detection

In the detection stage, because the scales of targets may be dif-
ferent in RSIs, we adopted the multi-scale window mechanism. A
number of multi-scale windows were slid over the predicted target
areas. Our current implementation set the window scales from
30 � 30 pixels to 150 � 150 pixels with the interval of 10 pixels
for the window side. The sliding step-size was set to be 10% of
the window side length similar to the work (Sun et al., 2012).
207 satellite images containing 3033 targets were used to test
the performance of the detectors. Fig. 9 shows a number of de-
tected results by using the proposed approach (s = 0.5031). As
can be seen, the proposed multi-class detector can locate the tar-
gets of various classes effectively although these targets may have
different orientations and sizes.

We also constructed two quantitative evaluations to test the
performance of the proposed work. We manually labeled the tar-
gets using bounding boxes in all testing images as the ground
truth. For each category of targets, let NP, TP, and FP denote the to-
tal number of target objects in the ground truth, the number of
true positives, and the number of false positives in all testing
images, respectively. A detection is marked as a true positive when
its corresponding window can cover more than 50% of a ground
the proposed model, WSCR model and FT model. (The words shown in the leftmost
)



Table 2
Performance comparison of different methods in predicting target candidate areas.

Our method FT WSCR

Potential recall 0.9977 0.8153 0.9935
Prediction area rate 0.1165 0.1692 0.1999

Fig. 9. A number of multiple target detection results by the proposed approach (s = 0.5
diamond are labeled by red, green, blue, and white boxes, respectively. The false positive e
this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Quantitative comparison results by using various approaches. (a) The PRCs of usin
prediction model.

Fig. 8. ROC curves of various saliency maps using different methods and their
corresponding AUC values denoted in parentheses.
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truth (Felzenszwalb et al., 2010; Santosh et al., 2010). By following
most previous works (Akçay and Aksoy, 2008; Lei et al., 2012; Li
and Itti, 2011; Tao et al., 2011), we used the PRC as the metric to
measure the performance of the object detectors, where the recall
and precision are defined as follows:

Recall ¼ TP
NP

Precision ¼ TP
TPþ FP

ð19Þ

In each evaluation, the PRC was used as the metric, which is
plotted using the recalls and precisions on all testing data under
different threshold values of s. In our experiment, the threshold s
can considerably affect the detection performance. To be specific,
a high value of s may yield a good Recall but a bad Precision and
vice versa. The optimal s is empirically determined to the value
which leads to the highest F1 - measure. Here, F1 - measure is com-
puted as: F1 - measure = (2 � Recall � Precision)/(Recall + Precision).
In the first evaluation, we compared the proposed approach with
three other state-of-the-art detection algorithms (Xu et al., 2010;
Sun et al., 2012; Yang et al., 2009) using the same sets of training
data and testing data. The first algorithm (Xu et al., 2010) is based
on BoW feature description and SVM classifier, which is called
BoWSVM in this paper, and the size of the codebook is set to 200
which obtained by K-means clustering. The second algorithm
(Sun et al., 2012) is based on spatial sparse coding bag-of-words
031). The truly detected airplane targets, ship targets, storage tanks, and baseball
xamples are labeled by yellow boxes. (For interpretation of the references to color in

g different target detection approaches. (b) The PRCs of using and not using saliency



Table 3
Performance comparisons of different approaches in terms of AP.

Approach AP

Our method with using the saliency prediction model 0.7420
Our method without using the saliency prediction model 0.6481
BoWSVM (Xu et al., 2010) 0.3020
SSCBOW (Sun et al., 2012) 0.3822
ScSPM (Yang et al., 2009) 0.1692

Fig. 11. The confusion matrix for evaluation of multi-class classification
(s = 0.5031).
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and SVM classifier, which is called SSCBOW in this paper, and the
size of codebook is set to 400 which trained using sparse coding.
The third algorithm (Yang et al., 2009) is based on the sparse cod-
ing of SIFT features, spatial max pooling, and SVM classifier, which
is called ScSPM in this paper. For this algorithm, we use 3 scale lev-
els which generate 21 segments and the codebook size is set to
200. For the task of multi-class classification, their SVM classifier
is built using one-against-all strategy (Yang et al., 2009).
Fig. 10(a) shows the PRCs of three different approaches. It is easy
to see that the proposed algorithm can achieve the best perfor-
mance for the purpose of multi-class target detection.

The second evaluation is to compare the performance with
using and without using the saliency prediction model. The latter
approach indicates that the detection is performed over the entire
Fig. 12. PRC and running time comparisons of using different sliding step-size values an
shown in the parentheses and s indicates seconds.
image instead of only over potential target areas predicted by the
saliency model. Fig. 10(b) shows the comparison results. With
the same recall value, the precision with using the saliency predic-
tion model is higher than that without using the saliency predic-
tion model, which means the proposed method yields a lower
false alarm rate with the same true positives. With the same preci-
sion value, the recall with using the saliency prediction model is
also higher than that without using the saliency prediction model,
which means the proposed method can obtain more true positives
with the same false alarm rate. The comparison results demon-
strate that the saliency prediction model can significantly improve
the performance in terms of PRC.

In addition to the PRC evaluation, we also adopted the AP to
quantitatively evaluate the performance of different methods.
Table 3 shows the APs of different approaches. As can be seen, the
proposed method is substantially better than other methods in
terms of AP. This result is consistent with the result in terms of PRC.

To evaluate the discrimination of multi-class classification, we
provided the confusion matrix in Fig. 11. As can be seen from the
results, our method can discriminate the inter-class difference
among different category targets.
4.5. Evaluation of computational complexity

The proposed algorithm was implemented using MATLAB
R2010b and run on a PC with Intel Pentium 2.13 GHz CPU and
2 GB memory. The offline discriminative dictionary training took
a few hours. The online sparse encoding of each sliding window
averagely took 0.0037 s. The average time consumed for saliency
prediction was 10 s approximately. The selection of step-size for
sliding essentially decides the running time of the target detection.
There is a trade-off between the detection accuracy and cost when
we vary the value of sliding step-size. A large value of sliding step-
size leads to the faster detection speed and the lower detection
accuracy. In contrast, we can obtain the better detection accuracy
whereas the detection will take longer time when we use small va-
lue of sliding step-size. Fig. 12 presents the average running time
for detecting multiple targets in 1000 � 800 satellite RSIs associ-
ated with different sliding step-size values and the use of saliency
prediction model or not. Note that we utilized a fixed set of
d using or not using the saliency prediction model. Each method’s running time is
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parameter values except for the sliding step-size for all test images,
and the sliding step-size was set to be proportional to the sliding
window side length. As can be seen, the sliding step-size greatly
influences the detection speed whilst having a moderate impact
on detection accuracy. The usage of the saliency model can sub-
stantially reduce the computational cost of detection and improve
its efficiency.
5. Conclusions

In this paper, a practical framework for detecting multi-class
geospatial targets from RSIs has been proposed. The unique contri-
butions that can distinguish the proposed work from existing
works are threefold. First, a supervised learning model was built
based on a variety of saliency features and models, which enables
it to predict candidate locations containing targets. Second, a mul-
ti-class classifier based on the discriminative dictionary learning of
sparse coding representation was developed to detect multiple tar-
gets from different classes simultaneously and efficiently. The
developed classifier leverages the discriminative information hid-
den in various categories of targets. Finally, a ground truth dataset
using images from Google Earth was constructed by three experts
for studying visual saliency modeling in RSIs, which is among the
earliest benchmarks in this area to the best of our knowledge.

We plan to extend this work along the following directions.
First, we will apply the developed target detector to detect a larger
number of classes of targets. Second, the false positive rate of our
current saliency prediction model is still slightly high, which re-
duces the efficiency of the detector. Our future work will incorpo-
rate more powerful features or improve the salient region
segmentation to further decrease the false alarm rate. Third, in this
work, our detector was based on multi-scale window scanning
over predicted target candidate areas. We may adopt Hough voting
on predicted target candidate areas, which may further improve
the efficiency.
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