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a b s t r a c t

3D shape retrieval is a fundamental task in many domains such as multimedia, graphics, CAD, and
amusement. In this paper, we propose a 3D object retrieval approach by effectively utilizing low-level
patches of 3D shapes, which are similar as superpixels in images. These patches are first obtained by
means of stably over-segmenting 3D shape, and then we adopt five representative geometric features
including shape diameter function, average geodesic distance, and heat kernel signature, to characterize
these low-level patches. A large number of patches collected from shapes in a dataset are encoded into
patch words by virtue of locality-constrained sparse coding under the consideration of local smooth
sparsity. Input query is compared with 3D models in the dataset through probability distribution of
patch words. Experiments reveal that the proposed method achieves comparable retrieval performance
to state-of-the-art methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

3D model as an important media contains rich 3D information
preserving real object surface, color, and texture, which has been
extensively applied in the domain of multimedia, graphics, virtual
reality, amusement, design, and manufacturing. A huge number of
publicly usable models such as in Google 3D Warehouse has been
widely distributed and quickly spread, and many researchers attempt
to provide content based retrieval techniques, e.g., sketch based 3D
model retrieval [1], range image based retrieval [2], example shape
based retrieval [3], and partial shape based retrieval [4], for accurately
searching desirable objects and reusing these models.

A variety of 3D shape retrieval algorithms have been proposed,
where early research on retrieval methods [5] focused mainly on
global descriptors and their invariance under global Euclidean
transformations. Recently significant effort has been invested on
3D interest point detection [6–8], local point description and
organization [9], topological structure [10], non-rigid shape fea-
ture [11], and appearance analysis [12,13].

In this paper, we propose a 3D object retrieval approach by
effectively utilizing low-level patches of 3D shapes consistent with
geometric criterion, which are analogous to superpixels in images.
In the novel framework, 3D shape is first over-segmented into
many low-level patches, and different types of geometric features
are extracted from these patches. Then we encode a large number
of patches collected over a 3D model dataset via locality-

constrained sparse coding, and extract compact and representative
patch words. Input query is compared with 3D models in the
database by probability distribution of patch words. Several
groups of experimental results show that this method improves
the retrieval performance of state-of-the-art methods.

The main contributions of the paper are described as follows.

1. Compared with point descriptors based retrieval, we introduce
low-level patches to represent a 3D object, and each object only
requires a small number of patches to discriminate from
irrelevant objects. Moreover, these patches are not randomly
generated but according to geometric criterion.

2. Different from retrieval methods based on meaningful seg-
ments and graph structure, our method avoids directly gen-
erating a few meaningful parts, which possibly leads to mis-
segmented parts because the techniques of semantic segmen-
tation are not mature. Moreover, we do not adopt graph
structure to organize these parts because many topologically
variable objects exist, for example, vases with different number
of handles. Patch based representation will make retrieval
robust against topology variation.

3. The motivation of proposing sparse coding to represent 3D
objects is based on our observation, that not only the same
category of objects but also irrelevant objects have many
visually similar patches. For example, human body has many
similar patches as horse body. Therefore, we extract sparse
patch words to approximate these shapes and model occur-
rence frequency of these common features using locality-
constrained and relatively sparser coefficients than previous
bag-of-features retrieval algorithms.
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The rest of this paper is organized as follows. We first discuss
related works in Sections 2 and 3 present an overview of the
proposed method. Section 4 introduces how to generate low-level
patches and a patch segmentation algorithm. Section 5 describes
each patch via different types of 3D local descriptors. The process
of encoding these patches via locality-constrained sparse coding is
presented in detail in Section 6. Experimental results of 3D shape
retrieval are reported on two representative 3D shape data sets in
Section 7, and we conclude this work in Section 8.

2. Related works

In the past decade, 3D model retrieval has become an active
research topic in various fields such as multimedia, computer
graphics, computer vision, and computer aided design. In contrast
with early works [5] which take into account only the whole shape
characteristics of 3D model, recent works mainly focus on local
point description and organization, topological structure, non-
rigid shape feature, and appearance analysis. Local point descrip-
tor can encode rich local context while keeping rotation or
bending invariant. Local descriptor based retrieval methods are
commonly composed of three steps. (1) Detecting salient points
(or local regions). This step can be omitted if all the points are
uniformly sampled on the surface of 3D model. (2) Describing each
salient point (or local region) with one feature vector. If this step is
removed, the retrieval problem is converted into shape registra-
tion, which can be solved by Iterative Closet Points (ICP) and its
invariants. (3) Comparing two sets of point (region) features. A
simple way is to sum the distance of each pair of nearest neighbors
in feature space. It is also feasible to compare histograms of these
original features, or match template features of a training set.
Representative local descriptors applied in 3D shape retrieval
include global point signature [14], Laplace–Beltrami operator
defined on local manifold [15], heat kernel signature [16] and
scale invariant heat kernel signature [17], 3D SURF [18], 3D Harris
[19], 3D SIFT [20], inner distances [21], and 3D intrinsic shape
context [22]. To avoid high computational burden from combina-
torial comparison between two sets of dense points, and effi-
ciently organize these descriptors, bag of features has been
borrowed from text and image processing to address correspon-
dence and matching of 3D local descriptors [23,24].

Retrieval based on topological structure assumes that a 3D
model is represented by means of a topologically connected graph
consisting of nodes and edges. The problem of 3D model compar-
ison can be converted into low-dimensional graph matching after
extracting topological structures such as medial surface, curve
skeleton, Reeb graph, and model graph. These simplified graphs
have similar topology structures as original 3D models, and
comparison between 3D models is able to be realized by virtue
of checking isomorphism of simplified graphs. For example, there
exist several types of graph isomorphism algorithms including tree
search based algorithms, decision tree based techniques, and
spectral methods. These algorithms can perform inexact computa-
tion with matching cost to measure the similarity of two simpli-
fied graphs. This type of strategies has been extensively
investigated in 3D shape retrieval, for example, common undir-
ected graph adopted in [25], Reeb graph used in [26,10] and
extended Reeb graph [27], bipartite graph used in [28], skeleton
graph adopted in [29] and binary tree used in [30]. Each explicitly
or implicitly segmented meaningful part is identified by a single
node, and edges in the graph represent adjacency relations
between these segments. Therefore, shape retrieval is easily
achieved by resorting to checking graph isomorphism and mea-
suring similarity of simplified graphs of two shapes.

Many works try to solve the difficulty of non-rigid 3D shape
retrieval [11] by means of utilizing various isometry invariant
attributes. Geodesic distance measures the intrinsic distance
between two arbitrary points on 3D surface, and contains rich
geometric information. For example, geodesic distance commonly
keeps unchanged under isometric deformations, which can assist
in handling non-rigid shape deformation. A representative work is
spectral method based on spectral decomposition of geodesic
distances [31]. It filters geodesic distances appropriately to remove
the effect of scaling and then compute a low-dimensional spectral
embedding of 3D shape to obtain invariance to bending and rigid-
body transformations. Spectral decomposition of an affinity matrix
between geodesic distances characterizes a whole 3D shape, and
its real eigenvalues are adopted to compare with other shapes.
Diffusion distance based descriptor [32] inherits the isometry
invariant attribute of geodesic distance, and further introduces
the average of all the paths of fixed steps connecting two points on
the surface, which is more robust than single geodesic distance.
The diffusion distance is seen as average probability of traveling
between two arbitrary points. Another isometry invariant descrip-
tor is based on Laplace–Beltrami spectrum of 3D surface [33].
The spectrum is represented with eigenvalues of Laplace-Beltrami
operator, and independent of different parametrization and spatial
position of 3D shape. Additionally, the eigenvalues can be normal-
ized so as to indirectly handle different scales of 3D shapes.

Appearance based 3D object retrieval tends to address how to
effectively generate, organize, and compare many views of a 3D
object. For example, several works focus on selecting query views
[34], weighted bipartite graph matching of views [35], camera
constrained-free view generation [12], constructing multiple
hypergraphs of views [13], and panoramic views [36]. An inter-
esting view based work employs interactive learning mechanism
[37], which establishes a mapping from feature points in low-level
feature space to points in high-level semantic space. The mechan-
ism receives long-term relevance feedback from users via recorded
retrieval history, and captures users' semantic information to
refine retrieval results.

Different from previous works, in this paper we introduce the
concept of low-level patches to represent a 3D object. This way
avoids semantic segmentation used in retrieval methods, which is
heavily dependent on topological structure such as skeleton, and
unstable in the case of topological change. Moreover, the techni-
que of locality-constrained sparse coding avails to extract high-
level patch words from a large set of 3D shapes with many similar
patches, which will be more compact and representative than low-
level patches.

3. Overview of the proposed method

The overview of the proposed method is shown in Fig. 1. Each
3D shape is first over-segmented into a number of low-level
geometric patches, and these patches are described with different
types of geometric descriptors, which are adopted to characterize
different geometric attributes including local, global, and topolo-
gical features. After extracting these features for each patch
collected from all 3D shapes in a large data set, locality-
constrained sparse coding is adopted to construct a set of bases
also known as visual words in a vocabulary in the domain of
computer vision. Each patch is encoded by means of these bases,
which are named as patch words in this paper. A number of patch
words generated from a large set of 3D shapes compose a large
vocabulary. Given a new object as query shape, the problem of
representing it with high-level patch words is converted to
optimize its coefficients via locality-constrained sparse coding.
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The input query compares with 3D models in the database by
probability distribution of patch words.

4. Low-level patch generation

The segmentation based retrieval methods directly segment 3D
shapes into high-level semantic parts, for example, human is repre-
sented by several components, head, arms, legs, etc. A graph is used
to organize these parts, and 3D model matching is simplified to a
problem of graph isomorphism. However, this type of methods is
sensitive to objects with different topology, for example, vases with
different number of handles, because their graphs significantly vary. It
results in that objects with similar semantics are easily mis-recognized
into different categories. In this paper, to our best knowledge, it is the
first time to introduce low-level patch into the domain of 3D shape
retrieval. It is similar as the concept of superpixel in image processing,
which has been successfully applied to recognition of complex scenes.
However, we cannot resort to spatially uniform patch generation on
3D model like [38] because it loses low-level initial geometric
information.

It is regretful, however, that up to now there are seldom
segmentation methods aiming at generation of low-level patches

because most segmentation methods are designated to generate
high-level meaningful parts. We attempt to introduce a classical
and fully automatic segmentation method based on randomized
cuts [39], which is considered as highly discriminative and robust
segmentation in a recent evaluation work [40]. It generates a
random set of segmentations and measures the frequencies that
each edge of a mesh lies on a segmentation boundary in the
randomized set. Therefore, it is less sensitive to surface noise,
tessellation, pose, and intra-class shape variations, and these proper-
ties will help to accurately match shapes with same semantics but
large geometrical variations and non-rigid deformations.

It first defines concave weights by means of a dihedral angle
between two adjacent faces to form a total cut cost NCutK as follows:

NCutK ¼ ∑
K

i ¼ 1

wðSi;M�SiÞ
AðSiÞ

; ð1Þ

where Si is a segmented patch and M is the whole 3D mesh. K is the
number of segmented patches. AðSiÞ is the area of ith segmented
patch, which is used to normalize the cost function to avoid
dependence on mesh tessellation. wðSi;M�SiÞ is the cut cost of a
patch, defined by

wðSi;M�SiÞ ¼∑
e
lðeÞminððθðeÞ=πÞα;1Þ; ð2Þ

Patch 1

Patch 50

...

...

Dataset

Features of patches

Sparse coding

Patch words
Offline
Online

Patch 1

Patch 50

...

...

Sparse
Coding Sparse coefficients

Group
Comparison

Sparse coefficients

Patch features

Fig. 1. Overview of the proposed method based on sparse patch coding. The offline process of 3D shape retrieval is composed of three main steps, low-level patch
generation, vocabulary construction, and high-level object representation. A given query is over-segmented into patches on line, and each of patches is encoded to sparse
coefficients, which will be compared with coefficients stored in the database.
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where e denotes each boundary edge of segmented patch, and l(e) is
its length. θðeÞ is its dihedral angle, and here only concave boundaries
are considered. α is set to 10 in our experiments. And then, the
difference in cut costs associated with merging each pair of smaller
patches is mapped to [0,1], and each value is raised to the power of a
randomized parameter 1=r. r is set to 0.02 according to the suggestion
from [39]. Each pair of smaller patches is merged with the probability.

Nevertheless, we find it is sensitive to local surface fluctuation
and results in extremely small patches. This problem is related to
the fact that it is not robust by adopting the dihedral angle of an
edge as its cut cost. To overcome this shortcoming, we adopt as its
cut cost the mean of dihedral angles around each edge in a
geodesic radius of 1% average geodesic distance on the 3D mesh.
This performs well in practical over-segmentation. In order to
provide sufficient low-level patches for next high-level processing,
we set patch number to 50 for each object and generate the same
number of patches for each category of objects, as illustrated in
Fig. 2. It can be seen that each low-level patch has already
contained rich geometric information and these small patches
can sufficiently represent the whole characteristics of each object.

5. Patch description

After we obtain these low-level patches for each 3D model,
another problem we need to resolve is how to effectively describe
these patches because it is different from point features. Each
patch is composed of large points, edges, and faces, and describing
the patch requires enough consideration on its geometrical char-
acteristics, topological features of connecting its neighbors, and
also its relative position or function in the global shape. We tend to
adopt conformal geometry signature to describe its geometrical
features, for example, easily differentiating sharp or smooth

surface regions. Moreover, shape diameter function of each region
is adopted to describe its relative thickness, an important geome-
trical attribute which can recognize the part that it belongs to.
For topological features, we consider its connection relationship
with local neighbor regions, and employ Laplace–Beltrami opera-
tor to describe its topological connection. In order to describe its
global position or function, two descriptors, average geodesic
distance and heat kernel signature, provide messages about the
global relationship between this region and other regions. We first
compute point descriptors and then generate patch features by
estimating distributions of point descriptors. The detailed point
descriptors are described as follows.

Conformal geometry signature: When a 3D manifold model is
conformally transformed into plane, each conformal scaling factor
is used to locally scale the neighborhood of a vertex in order to
achieve the target curvature at the vertex [41]. High scaling factor
corresponds with cone singularity so that its plane parameteriza-
tion has low distortion. We use the scaling factor on each vertex as
our point feature. The conformal map from a manifold mesh to a
homeomorphous surface with constant Gaussian curvature is
computed by solving the following sparse linear equations

Lϕ¼ KT �Korig ; ð3Þ
where, L denotes Cotangent Laplacian, and Korig and KT are
Gaussian curvature at the vertex and the area-weighted mean of
all the Gaussian curvatures on the mesh respectively. The solution
vector ϕ is composed of conformal factors of these vertices.

Shape diameter function: The shape diameter function (SDF) [42] is
a volume-based scalar function measuring the diameters of different
parts of a 3D shape. The SDF value is computed by sending 30 rays
inside a small cone with angle of 301 to intersect with the opposite
side of the boundary, and averaging these weighted ray lengths.
The values remain similar on the neighborhood of the same part,

Fig. 2. Patch generation results for 3D objects from thirteen classes. Each object is partitioned into 50 patches, and we can see that these patches already have low-level
geometric feature, and can be regarded as smallest meaningful patch.

Fig. 3. Shape diameter functions of points in a class of vases with different topological and geometrical variants. The red discriminates parts with larger diameters from thin
parts. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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and oblivious to articulated deformation. The SDF distributions of
several examples are shown in Fig. 3.

Laplace–Beltrami descriptor: This descriptor extends Laplace
operator in Euclidean domain onto manifold to achieve the
divergence of vertex gradients on a mesh. Laplace–Beltrami
operator of each vertex is commonly discretized into sum of the
distances with cotangent and area weights from this vertex to its
one-ring neighbors. Local surface feature is extracted based on the
eigen-decomposition of the Laplace–Beltrami operator defined on
the local region [15]. The set of larger eigenvalues are chosen to
form a feature vector for describing this point, which is isometry
invariant and consequently able to tolerate non-rigid transformation.

Average geodesic distance: We compute approximate geodesic
distances [43] on 3D mesh between each point and other points,
and average these distances for the point. The average geodesic
distance is used for our point feature. We compute this distance
for each vertex of several examples, and visualize these vertices in
Fig. 4.

Scale invariant heat kernel signature: Heat kernel signature is
derived from a heat diffusion equation by using Laplace–Beltrami
operator on surfaces. The fundamental solution of the heat
equation is called the heat kernel. Specifically, the heat diffusion
over vertices v of a given manifold mesh M in time t is described
by the following heat equation:

Δuðv; tÞ ¼ �∂uðv; tÞ
∂t

; ð4Þ

where Δ is Laplace–Beltrami operator on the manifold mesh.
Given an initial heat distribution, Dirac delta function δxðyÞ ¼ 0,
heat kernel is understood as the amount of heat transferred from
the source x to the target y in time t given a unit heat source at x,
and can be solved by eigen-decomposition of Laplace–Beltrami
operator in the following equation:

htðx; yÞ ¼ ∑
1

i ¼ 0
e�λi tϕiðxÞϕiðyÞ; ð5Þ

where λi and ϕi are the ith eigenvalue and eigenfunction of
Laplace–Beltrami operator respectively. Sun et al. [44] represent
3D shapes via the heat kernel signature htðx; xÞ under a set of
diffusion times ftg, and set a different diffusion time to obtain local
neighborhood information at a easily controlled scale. Heat kernel
signature has an intuitive physical meaning that when a quantity
of heat is placed on the source point how much the heat is left
while time t elapses. This descriptor is intrinsic, insensitive to
isometric deformation, and robust against surface noises. Further-
more, in order to make it scale invariant, Fourier transform of heat
kernel signatures is proposed in [17], and we tend to adopt this
feature and then visualize point values of relevant objects in Fig. 5.

Patch feature: After we obtain five descriptors for each point on
the low-level patch, the description of the patch is defined by
constructing a histogram of all the point values for each type of
descriptors. Five histograms are naturally concatenated into a

whole feature vector so as to form the final patch description. In
this paper, we consider these five types of features are equally
important for each patch and hence their weights are same.

6. High-level patch coding

Sparse coding [45] has attracted many researchers from the
domain of image and vision to solve tasks of image analysis, e.g.,
image retrieval [46,47], classification [48], recognition [49], and
segmentation [50]. The advantages of applying sparse coding into
3D shape retrieval are two-fold. The first one is that it can capture
higher-level features via learning basis functions from unlabeled
data, and these features contain more semantic information and
are adaptable to complex recognition tasks on variable 3D shapes.
Moreover, sparse coding can learn over-complete basis sets, which
can more adequately represent objects than limited orthogonal
basis and then capture a large number of pattern in the 3D shape
dataset. In this paper we introduce the concept of sparse coding into
3D shape retrieval to improve the state-of-the-art performance.

6.1. Sparse coding

Given each patch feature point xARk, assume that it is sampled
from the feature space composed of all the types of patches
collected from different 3D shapes. Sparse coding aims to interpret
the feature point with an over-complete set of n bases
fb1;…;bngARk, which are linearly combined with a sparse weight
vector ωARn such that

x� ∑
n

j ¼ 1
ωjbj; ð6Þ

where n satisfies n4k, which means that the bases are over-
complete. These bases are also known as a code dictionary
B¼ b1;…;bn

� �
ARk�n. The key of coding lies in how to discover

these bases only dependent on unlabeled data, which are con-
sidered as a training set of m input vectors fx1;…;xmg. The training
process is realized in unsupervised way, which is converted into
an optimization problem. These bases and their corresponding
weight vectors fω1;…;ωmg are the solutions to the following
optimization problem:

minimize
B;Ω

∑
m

i ¼ 1
Jxi�Bωi J22þλJωi J1;

s:t: Jbj J22r1: ð7Þ

where Ω¼ fωig. The above cost function is union of the recon-
struction error approximating the input vector via linear combina-
tion of basis, and the sparsity penalty of basis. We use l1 penalty as
the sparsity function, and the optimization problem is convex
while holding two sets of parameters B and Ω alternatively fixed.
In order to avoid trivial solutions, the l2 norm of each basis bj is

Fig. 4. Average geodesic distances of points on several chair meshes. The red shows higher values. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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limited to be less than or equal to 1. Although several approaches
such as QCQP solver are competent for the problem, we adopt an
efficient algorithm proposed in [51], where a feature-sign search
strategy converges to global optimum while keeping the bases
fixed and then bases are learned by the Lagrange dual given these
unchangeable coefficients. We finally obtain a set of bases as our
code dictionary, which contains diverse patch representatives of
3D shapes and covers most patch description.

6.2. Locality-constrained sparse coding

In order to obtain local smooth sparsity and make patch
description more accurately represented by multiple bases, we
further adopt a recent locality-constrained linear coding frame-
work [52] to improve retrieval performance. Specifically, locality
constraint instead of the sparsity constraint in Eq. (7) is integrated
into the objective function using the following criteria:

minimize
B;Ω

∑
m

i ¼ 1
Jxi�Bωi J22þλJdi � ωi J1;

s:t: 1Tωi ¼ 1; ð8Þ

where � denotes the element-wise multiplication. The constraint
makes coding shift-invariant. The distance di adjusts the weights
of different bases by setting them proportional to the similarity of
each basis to the patch descriptor xi. It is defined as follows:

di ¼ exp
distðxi;BÞ

σ

� �
; ð9Þ

where distðxi;BÞ ¼ ½distðxi;b1Þ;…;distðxi;bnÞ�T , and each entry
denotes the normalized Euclidean distance between xi and bj in
the feature space. σ decides the weight decay speed and we
empirically set it to 100 in our implementation. It should be noted
that the essence of local constraint is feature selection because
these distances make local bases selected for each patch descrip-
tion. This results in that the coding of each patch becomes
relatively sparser and has the potential to reduce store
requirements.

Another reason we choose the locality-constrained sparse
coding is that the solution to the objective function in Eq. (8)
can be accurately derived, which avoids the possibility of obtaining
local optimum via iterative means. The analytical solution is
expressed with the following equation:

~ω i ¼ ðCiþλ diagðdiÞÞ n 1;
ωi ¼ ~ω i=1

T ~ω i; ð10Þ

where ~ω i is an intermediate solution, and diagðdiÞ represents a
diagonal matrix in which each diagonal entry is the distance to the
corresponding basis. Ci denotes covariance matrix between each
patch description xi and bases B. It is given by

Ci ¼ ðB�1xT
i ÞðB�1xT

i ÞT : ð11Þ

6.3. Algorithm

There are three main steps in the retrieval algorithm based
on locality-constrained sparse patch coding while comparing 3D
models, which are illustrated in Fig. 1.

Low-level patch generation: Each object is partitioned into 50
different patches, and each low-level patch is characterized via
utilizing histograms of five types of descriptors, that is, conformal
geometry signature, shape diameter function, Laplace–Beltrami
descriptor, average geodesic distance, and scale invariant heat
kernel signature.

Vocabulary construction: After extracting features for each patch
from all the models in a large data set, a set of bases also known as
visual words in a vocabulary in the domain of computer vision is
learned from large numbers of patch features. Here, we name
these words as patch words so as to differentiate them from visual
words in computer vision. For example, one of the data sets we
adopt is composed of 400 3D models subdivided to 20 classes.
Since each model is described with 50 patch features, 20 K patch
features are obtained in the whole data set, which are used to
construct patch words in the vocabulary. We solve the optimiza-
tion mentioned above to get an optimum dictionary, which
contains a set of patch words. We also studied the influence of
the number of patch words while constructing vocabulary, and the
size is set to 8, 16, 32, 64, 128, 256, respectively. The overall
performance improved with the increase of the vocabulary size
from 8, however, if the size exceeds 128, retrieval error rate has
turned to rise and furthermore the run time becomes longer
because of optimization of a large number of parameters.

High-level object representation: Given a new object as the input
shape, the problem of representing it with high-level patch words
is converted to optimize its coefficients by means of locality-
constrained sparse coding. In patch level, the coefficients which
are linearly combined with patch words are considered as a
distribution of occurrences of these words. Dissimilarity between
a pair of 3D objects P and Q is defined by comparing two groups of
patch coefficients in the following equation.

DisðP;Q Þ ¼ ∑
K

i ¼ 1
JωP

i �ωQ
i J ð12Þ

where K is the patch number, and ωQ
i identifies the closet match

of the sparse coefficient ωP
i . The distance between two sparse

coefficients can be l1 norm, Kullback–Leibler Divergence (KLD),
and Earth Mover's Distance. In this paper we adopt KLD to
measure the difference among the distributions of coefficients by
considering relative entropy.

7. Experiments

In this section we adopt two common 3D shape datasets and
evaluation criteria to investigate the proposed retrieval algorithm,

Fig. 5. Scale invariant heat kernel signature of points in a class of teddy bears with different poses. The red shows higher heat kernel values. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)
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Locality-constrained Sparse Patch Coding (LSPC), and also compare
its retrieval performance to that of representative methods.

7.1. Evaluation criteria

To evaluate the retrieval performance of the proposed method,
we adopt recall precision values, two fundamental measures.
Recall is the ratio of the number of retrieved relevant objects to
the total number of relevant objects in the database. Precision is
the ratio of the number of retrieved relevant objects to the number
of returned objects. Each object is selected as query, and compared
against all the objects in the database. A retrieval list with length
equal to database size is returned. For each query, the number of
relevant objects in the retrieval list is same as the size of its class.
The desired retrieval result is that all the relevant objects lie in the
front of the list. The recall and precision values are finally averaged
on each class of objects, and then the whole data set.

7.2. Retrieval performance on SHREC 2007 dataset

A common data collection, composed of SHREC 2007 water-
tight models [53], is adopted to test the retrieval performance of
the proposed method. This collection is made up of 400 watertight
mesh models, subdivided into 20 classes, each of which contains
20 objects with different geometrical variations and also articu-
lated deformations. The data set contains not only natural objects,
for example, human, ant, octopus, teddy, four leg animals, but also
man-made objects such as cup, glasses, chair, plier, and bearing,
vase. Shapes in each class contain sufficient and diverse variation
from pose change to shape variability in the same semantic group.
Moreover, some shapes with redundant parts exist, for example,
sculpture head model with extra base, and there are also shapes
with different geometric genus, in another example, vases with
different number of handles. It is considered as a challenging data
set. We investigate the retrieval performance of the proposed
method on this dataset, and compare LSPC against the following
state-of-the-art methods. These methods have also been evaluated
on the same data set.

� Augmented multi-resolution Reeb graph (AMRG) [54,55]: They
define Reeb graph to describe a contour relationship mapping
vertices of a 3D shape to a geodesic space. Each contour level is
represented as an edge of the Reeb graph, and each region
between contour levels in a regular interval is coded into a
node of Reeb graph, which is seen as a semantically segmented
surface. The multi-resolution graph structure is then formed by
hierarchically linking these nodes of connected regions. Topo-
logical, geometrical and visual information is attached to each
graph node for enhancing graph matching and model
comparison.

� Spherical trace transform (STT) [56]: This method first scales and
places a 3D model into an unit sphere, and defines a set of
planes tangential to several concentric spheres. Each plane
intersects with the object, and intersection area is analyzed via
2D Krawtchouk moments, 2D Zernike Moments, and Polar
Fourier Transform. Spherical Fourier transform is applied on
intersection functions in order to generate rotation invariant
descriptors.

� Depth line encoding (DLE) [57]: In their method, each 3D model
is represented by a set of depth lines, extracted from depth
buffer images projected onto the six faces of its bounding box
after being normalized and scaled. Each depth image is con-
sidered as a collection of horizontal and vertical depth lines,
each of which is encoded in a set of sequence states. 3D models
in a database are compared to a query object and retrieved via

introducing a dynamic programming distance between their
depth line descriptors.

Numerical values for the averaged recall and precision on all the
models in the dataset are reported in Fig. 6. The average recall
precision curves of some state-of-the-art methods, including AMRG,
STT, and DLE, are plotted in the same figure as our reference. These
results show that our method is comparable to the representative
methods evaluated on the same dataset. LSPC obviously outperforms
STT and DLE, and its retrieval precision is slightly better than that of
AMRG. Although they are very close in the retrieval performance, we
know that AMRG depends on the topological connections of different
parts so that it is susceptible to topological variations in the same
semantic group. Differently, LSPC directly decomposes a 3D mesh into
smaller patches, and effectively avoids the influence from the change
of part connections.

7.3. Retrieval performance on McGill 3D shape dataset

In this subsection, we report the results of our retrieval
experiments conducted on the McGill 3D shape dataset [58] . This
whole dataset is composed of 455 models and the exemplars span
19 basic level object classes such as human, hands, teddy bears,
ants, octopuses, crabs, and so on. These classes are divided into
two categories, 255 natural models with significant part articula-
tion in 10 classes, and remaining man-made objects without clear
part bending. A distinct characteristic of McGill 3D shape dataset
lies in that it particularly contains a large number of articulated 3D
models, which is commonly adopted to observe whether retrieval
algorithms handle non-rigid deformations. We test our algorithm
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Fig. 6. Recall–precision curves of some state-of-the-art methods and the proposed
method on SHREC 2007 watertight dataset.
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on these articulated models of McGill 3D shape dataset, and
compare it with the following state-of-the-art methods.

� Spherical Harmonics Descriptor (SHD) [59]: Global spherical
harmonics descriptor is constructed on several concentric
spheres centering at the mass center of the analyzed 3D shape.
These spheres with different radii intersect with mesh surface,
and a binary identified function is used to evaluate intersection
and non-intersection relationship between each sphere and
mesh surface. The spherical function is decomposed into
harmonic functions with different frequency vectors, which
are used to characterize the global surface of the analyzed
shape. The descriptor is robust to rotation and translation
transformation, nevertheless, it is susceptible to non-rigid
deformation.

� Light Field Descriptor (LFD) [60]: For each light field descriptor, 10
orthogonal silhouette projections of 3D model are generated by
placing 20 virtual cameras on 20 vertices of a regular dodeca-
hedron. And then the camera system is rotated 60 times along
3 connected edges between two vertices so as to be switched
onto different vertices. The similarity between two 3D models
is measured via the minimum visual similarity under different
rotations. In order to enhance robustness against rotation and
distribute all the cameras uniformly, they further create a set of
light field descriptors by rotating the dodecahedron 91 times
on a sphere. Zernike moments and Fourier descriptor are
adopted to describe the features of these projected images.

� Spectral Shape Descriptor (SSD) [31]: In this method, an affinity
matrix of 3D mesh is first formed, each entry of which
represents the affinity between two mesh vertices. They define
a Gaussian affinity matrix between each pair of vertices, and
their affinity is inversely related to the geodesic distance.
Moreover, the use of a Gaussian effectively reduces the influ-
ence from vertices geodesically far away. Spectral decomposi-
tion of the affinity matrix forms a spectral embedding, which
achieves normalization against rigid transformation, uniform

scaling, and bending. The eigenvalues specify the variation of
the shape along the axes given by the corresponding eigenvec-
tors. Hence they adopt these eigenvalues as spectral shape
descriptor.

We plot the recall precision curves for the three previous
retrieval methods mentioned above and also our method LSPC in
Fig. 7. Clearly, LSPC shows significant improvements for shape
retrieval in these non-rigid objects, compared to LFD and SHD
designed for searching rigid objects. Moreover, LSPC performs
better than SSD, a classical spectral methods, although our method
is not applied in the spectral domain. It benefits from several types
of patch features against bending and their sparse representations.

7.4. Study on the effect of low-level patch number

We investigate the effect of different number of low-level
patches used for the proposed LSPC. We continue to test retrieval
performance on McGill 3D shape dataset, and the number of
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Fig. 8. Visual effects of different low-level patch numbers for several 3D shapes from different categories. The number of low-level patches is set to 30, 50, and 70
respectively.

30
50
70

Pr
ec

is
io

n

1.0

0.9

0.8

0.7

0.6

0.5

Recall
0 0.2 0.4 0.6 0.8 1.0

Fig. 9. Recall precision curves on McGill 3D shape dataset in the cases of setting
different patch numbers to 30, 50, and 70 respectively.

Z. Liu et al. / Neurocomputing 151 (2015) 583–592590



low-level patches is set to 30, 50, and 70 respectively. Fig. 8
illustrates visual effects of over-segmented patches for several 3D
shapes from different categories. The retrieval performance is
evaluated using recall precision values, and higher values indicate
better retrieval accuracy. The recall precision curves for individual
patch numbers are reported in Fig. 9. As can be seen, the number
of patches changes from 30 to 50, which leads to better retrieval
accuracy. However, if the patch number continues to increase to
70, the retrieval accuracy starts to drop. Based on the experimental
study, 50 is finally selected as the optimal low-level patch number.

8. Conclusion

In this paper, we introduced the concept of low-level patch to
represent a 3D object, which reduces the number of point descriptors,
and makes retrieval robust against topology variation. These patches
were further encoded into patch words in sparse and locality-
constrained form, and the distribution of patch words was used to
improve retrieval performance. Experimental results have indicated
that our method is comparable to the state-of-the-art methods.

Limitations and future works: In this work, we only obtain
combinatorial optimum when comparing similarity between two
sets of patches after sparse coding, and overlook the structural
similarity of patches. This will fail in recognizing some irrelevant
objects with similar distributions of patch words, for example,
surface of cup and vase body. It will be interesting to investigate
similar concepts as spatial pyramid representation in image
analysis, and combine with sparse coding for improving 3D shape
retrieval performance.

In addition, we find that it is difficult to obtain visually suitable
patches for all 3D models while only depending on single geometric
criterion, because the over-segmentation generates some trivial
patches on the surface for many models. These trivial patches actually
impact on retrieval performance, and only prominent patches play a
more important role in representing 3D shapes. It would be highly
desirable to survey more geometric attributes to generate low-level
patches suitable for effective shape retrieval.
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