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a b s t r a c t

For 3D shape analysis, an effective and efficient feature is the key to popularize its applications in 3D
domain. In this paper, we present a novel framework to learn and extract local deep feature (LDF), which
encodes multiple low-level descriptors and provides high-discriminative representation of local region
on 3D shape. The framework consists of four main steps. First, several basic descriptors are calculated
and encapsulated to generate geometric bag-of-words in order to make full use of the various basic
descriptors' properties. Then 3D mesh is down-sampled to hundreds of feature points for accelerating
the model learning. Next, in order to preserve the local geometric information and establish the
relationships among points in a local area, the geometric bag-of-words are encoded into local geodesic-
aware bag-of-features (LGA-BoF). However, the resulting feature is redundant, which leads to low
discriminative and efficiency. Therefore, in the final step, we use deep belief networks (DBNs) to learn a
model, and use it to generate the LDF, which is high-discriminative and effective for 3D shape
applications. 3D shape correspondence and symmetry detection experiments compared with related
feature descriptors are carried out on several datasets and shape recognition is also conducted,
validating the proposed local deep feature learning framework.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The advancement of modeling, digitizing, and visualizing
techniques for 3D models has led to an increasing amount of 3D
models in the fields of multimedia, graphics, virtual reality,
amusement, design, and manufacturing [1]. Nowadays, a large
number of publicly available models such as Google 3DWarehouse
have been quickly spread online. In addition, with the develop-
ment of RGB-D devices, e.g., Microsoft Kinect, users can obtain 3D
models in a convenient and efficient way, which further leads to
the explosion of 3D data. This rapid growth causes high demand of
3D models techniques including shape retrieval, recognition,
classification, and correspondence [2].

Reviewing the implementations of these techniques, we can
find that feature-based methods play an important role and some
details could be found in an early work [1] and the latest works
[3,4]. 3D shape descriptors are used to characterize important
global or local geometric characteristics, which are distinctively
discriminative with other shapes or local regions. Some descrip-
tors, such as area and volume, shape distributions [5], ratios
derived from the object's convex-hull, or the Light Field Descriptor
[6] have been proposed and achieved great performance in the

task of matching, retrieval, and some other applications [7].
Although these techniques make some breakthrough, there still
remain many hard problems badly in need of being solved. For
example, the shape descriptors mentioned above are global and
just use a single vector to represent an object. However, 3D models
have rich information including surface, color, and texture, while a
single vector cannot represent an object effectively. In addition,
global descriptors are often not invariant to scaling, rotation, or
translation, hence they have limited capability to discriminate
shape variance. To cope with above-mentioned problems, local
descriptors [4,7] which use a single vector to describe the local
surface region around a number of sample points on an object,
have been studied in recent decades. They have the merits of
capturing important geometric changes on local regions of 3D
surface, being invariant to scaling, rotation, and isometric
transformation.

A good local descriptor is the one that is invariant to “unim-
portant” geometric changes, especially rotation, translation,
scaling, or bending (such as changing the pose of an articulated
character) [8]. Because only considering the feature of point itself,
the descriptor can be influenced easily by geometric changes.
When extracting the local feature of a 3D shape, we should take
into account the neighbor area surrounding the feature point. In
the last decade, some local descriptors, which will be introduced
in the following section in detail, have been proposed and
successfully used in many tasks. However, the performance of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2014.09.007
0097-8493/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: liuzhenbao@nwpu.edu.cn (Z. Liu).

Computers & Graphics 46 (2015) 117–129

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2014.09.007
http://dx.doi.org/10.1016/j.cag.2014.09.007
http://dx.doi.org/10.1016/j.cag.2014.09.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.09.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.09.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.09.007&domain=pdf
mailto:liuzhenbao@nwpu.edu.cn
http://dx.doi.org/10.1016/j.cag.2014.09.007


some 3D shape local descriptors is still far from satisfactory. The
main issue results from three aspects: First, some local descriptors
are insufficient to describe complex 3D shape, i.e., only catching a
piece of geometric characteristics. Second, 3D shape is composed
of complex topological structure and visibly variational geometry,
consequently for one type of descriptor only limited information
can be extracted. Third, although some descriptors can collect
enough information about one local region of 3D shape, they are
redundant, which leads to the inefficient usage. Thus, in order to
make the extracted feature boost the performance of shape analysis,
it is vital to design an effective and efficient local descriptor which
can provide discriminative information from raw data.

In this paper, we propose a novel framework to learn and
extract local descriptor for 3D shape. The fundamental of the
framework is to extract an intermediate representation preserving
its surrounding information from low-level 3D descriptors. How-
ever, this intermediate representation is redundant which results
in the low efficiency. Recently, the deep learning [9–11] has been
applied successfully in speech recognition, image processing, and
so on. First of all, it can provide a powerful solution to get the high-
level feature that is discriminative and robust. So it is critical for
pattern recognition. In addition, this method can achieve better
generalization because of that the high-level feature is learned
from the low-level features. Thus, we adopt deep belief networks
(DBNs) to extract compact feature from the intermediate repre-
sentation. Through the unsupervised learning, model parameters
of DBNs are optimized, and the output of the DBNs for newly input
data is regarded as the high-level feature which is called as local
deep feature (LDF).

The advantages of this framework are as follows:

1. The framework is not only limited to SI-HKS or AGD, other local
descriptors are also supported.

2. Multiple features can be fused to provide abundant description.
3. The learning procedure is fully unsupervised.
4. Unlike other machine learning methods which need to tune

parameter manually for obtaining the best performance, there
are no parameters to be tuned in the learning procedure. Some
other parameters, which are used for generating intermediate
representation, have little influence on the performance and it
is easy to select proper parameters.

Several experiments are conducted in 3D shape correspon-
dence, symmetry detection, and shape recognition tasks. Results
and comparisons with related descriptors indicate that the pro-
posed framework reaches promising performance.

2. Related work

Extrinsic descriptors: Some local descriptors are extracted based
on location and orientation of 3D mesh, or a local coordinate
system defined on a vertex. An earlier and representative work
is spin images [12]. Recently, Darom et al. [13] extend the spin
images to possess the capability of scale-invariant and interest
point detection. Sipiran et al. [14] adopt 3D Harris detector to
locate interesting points for 3D shape retrieval, which can be seen
as an extension from 2D Harris detector measuring the variation
in the gradient of a given function (e.g., the intensity function of a
image). 3D SURF descriptor [15,16] is recently proposed for
classifying and retrieving similar shapes. Although these features
have been applied in many 3D shape processing applications, they
belong to the extrinsic descriptors and usually cannot preserve the
rich information on local region of 3D shape.

Intrinsic descriptors. To overcome the above limitations, several
intrinsic descriptors have been proposed in recent decades, which

do not need to specify the descriptor position relative to an
arbitrarily defined coordinate system. Therefore, they achieve
much better discriminative capability for 3D shape analysis.

Laplace Beltrami operator, which is a generalization of the
Laplacian from flat space to manifold, is appealing for 3D shape
retrieval because of sparse, symmetric, and intrinsic properties of
its robustness to rigid transformation and deformation. Retrieval
methods [17–20] extract main eigenvalues and eigenvectors of
Laplace matrix generated on local regions to match different
regions of 3D shapes. Laplace–Beltrami operator also provides an
efficient way of computing a conformal map from a manifold mesh
to a homeomorphous surface with constant Gaussian curvature.
The histogram of conformal factors [21] serves as a robust pose-
invariant signature of 3D shape, which is regarded as an attribute
of a graph node to identify segmented parts in bipartite graph
matching for 3D shape retrieval [22]. In a recent work [23],
3D shape is also partitioned into several connected iso-surfaces
(annuluses) of conformal factors, and expressed with a graph
where node substitutes each annulus.

Heat kernel signature [24], a recently proposed local descriptor,
absorbs researchers' much attention. It provides rich local geo-
metric information which makes the signature invariant to iso-
metric deformation and has multi-scale characteristics, thereby
achieving better performance in 3D shape retrieval and matching
[25–28]. In order to overcome the influence of diffusion time
change under different shape scales [25], Fourier transform is
imposed on heat kernel signature at each given vertex to obtain
scale invariant. Another work uses intrinsic shape context (ISC)
[29] to characterize the local shape property. In the method, the
shape context is processed in an intrinsic local polar coordinate
system, therefore it is intrinsic and invariant to isometric deforma-
tion. Furthermore, Fourier transform is applied to the original
shape content data to deal with orientation ambiguity.

Learning features. Feature learning based methods attract atten-
tion of many researchers in the last decade because of their
capability of improving discriminability of low-level feature.

In the research of Shape Google [27,28], despite the introduc-
tion of spatial-sensitive bag-of-features (SS-BoF), the authors also
present a similarity-sensitive hashing method to achieve the best
discriminability and compact representation. A middle-level fea-
ture extraction scheme through learning hidden states from local
basic descriptors is proposed by Castellani et al. [30,31]. In the
method, local patches are modeled as a stochastic process through
a set of circular geodesic pathways and learned via hidden Markov
model. Bu et al. [32] propose shift-invariant ring feature (SI-RF)
based on iso-geodesic rings and shift-invariant sparse coding for
3D shape analysis. It represents the local region of a feature point
efficiently and has great performance on correspondence and
retrieval tasks.

The Laplacian-based descriptors achieve state-of-the-art per-
formance, however, they usually focus on different properties of
shape and are suitable for specified task. In order to provide a
generic feature descriptor for 3D shape, Litman et al. [33] propose
a learning scheme for the construction of optimized spectral
descriptors. In order to collect rich information from the raw data
and select the most significant feature, Barra et al. [34] propose a
method utilizing multiple kernel learning to find optimal linear
combination of kernels in classification and retrieval.

Above-mentioned methods focus on feature itself, but ignore
the structure consistency. Structural learning, which can produce
high-level semantic labels from low-level features through a
global optimization, has been successfully applied to segmentation
or labeling. Kalogerakis et al. [35] introduce a data-driven
approach to simultaneous segmentation and labeling of parts in
3D meshes. They adopt conditional random field model with
defined terms assessing the consistency of faces with labels and
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terms between labels of neighboring faces. To realize the auto-
matic recognition of functional parts of man-made 3D shapes, Laga
et al. [36] use graph to represent 3D shape, and then model the
context of a shape part as walks in the graph. In the method, the
similarity computation can be efficiently performed with graph
kernels.

Best view selection is an important procedure in view-based
shape retrieval, in order to achieve better performance, Laga [37]
proposes a framework to automatically select the best views of 3D
models by learning sets of 2D views that not only maximize the
similarity between shapes of the same class, but also make the
views discriminate shapes in different classes. To deal with the
problem of low compactness and discrimination power of view-
based descriptors, Tabia et al. [38] adopt vectors of locally
aggregated tensors to generate descriptor, and then use principal
component analysis to reduce the dimension of the descriptor.
Secord et al. [39] propose a perceptual model for best view
selection, in which the goodness measure relies on weights
determined via a large user study. Gao et al. [40] propose a 3D
object retrieval method with Hausdorff distance learning. In their
method, relevance feedback information is employed to select
positive and negative view pairs with a probabilistic strategy and a
view-level Mahalanobis distance metric is learned to estimate the
Hausdorff distances between objects.

Interactive feature learning is another important learning
method because it usually provides semantic information accord-
ing to the interaction with human. Moreover, it has the merit of
robustness, avoiding to generate abnormal results. Leng et al. [41]
present an interactive learning mechanism, which creates a map-
ping from feature points in low-level feature space to point in a
high-level semantic space. The mechanism receives long-term
relevance feedback from users via recorded retrieval history,
which is adopted to capture users' semantic information to refine
retrieval results.

3. Framework of local deep feature

The proposed novel feature learning framework for 3D shape is
carried out in the following four stages, while the flowchart is
depicted in Fig. 1.

3.1. Basic 3D shape descriptors

In this research, we adopt scale-invariant heat kernel signature and
improved average geodesic distance as the low-level 3D shape
descriptors which are used for generating intermediate representation.

Scale-invariant heat kernel signature: HKS [24] is derived from a
heat diffusion equation using Laplace–Beltrami operator on sur-
faces, which has the advantages of providing rich local geometric
information, invariant to isometric deformation, and multi-scale
characteristic. However, a limitation of the HKS is that it is sensitive
to the scale of shape. To cope with the problem, Bronstein and
Kokkinos [25] proposed a scale-invariant heat kernel signature
(SI-HKS) by Fourier transform of the difference of the HKS.

Average geodesic distance: The average geodesic distance (AGD)
[42] is initially introduced for the purpose of shape matching.
However, the AGD is not robust when using extremum as a normal-
ization factor, e.g. the use of the intra-class geometric variations
make the local descriptor change easily. It is therefore difficult to be
applied to generate bag-of-words from a set of models. We modify
the normalization factor to the mean of geodesic distances between
all pairs of vertices to cope with the above limitation. For any model,
the modified AGD descriptor has a fixed mean value 1.

Low-level descriptors: Finally, we concatenate the first six
frequency components of SI-HKS and AGD descriptor to form a

low-level shape descriptor as

FðxiÞ ¼ SIHKSðxiÞ½ω1;…;ω6�;AGDðxiÞð Þ; ð1Þ

where the dimension of the feature is M¼7. For the SI-HKS, the
time-scale is set to be ½1;20� with an interval of 0.2, the number of
eigenfunction is set to 100, and the log time base α¼2. Due to
each dimension has varying value ranges and scales, they are
linearly normalized to ½�1;1� according to each dimension's
maximum and minimum values. Feature weighting is described
in Section 3.3.

3.2. Feature point selection

Usually, 3D shapes need more than thousands of vertices to
represent them accurately, however, the feature of a given vertex
is similar to its neighbors. In addition, using the full set of vertices
is computationally intractable for dense meshes. Therefore, in this
work, a few points on the mesh are selected as feature points for
training the model. We adopt farthest point sampling (FPS)
strategy [43] as the uniform sampling, which is to compute subset
feature points V ¼ fviAX; i¼ 1;…;Nsg on the mesh X, where Ns is
the desired sampling point number. The initial point v1AX is
sampled at random.

3.3. Local information encoding

For a 3D shape, the description value of the vertex does not
provide sufficient discriminative information especially for the
low-level descriptor. Usually, the neighbor vertices and their
topological connections provide much more information. There-
fore, an effective way to extract high-representative feature for a
feature point is to encode the local area's property. Nevertheless, it
is difficult to collect local information because of the variational
length of edges and the complex structure of mesh. To overcome
these challenges, we propose a method to encode the local area's
property into local geodesic-aware bag-of-features regarded as
intermediate representation, which expresses the occurrence
probability of geometric words and extracts the rich information
on 3D shape efficiently. Also, this way makes the intermediate
representation have the same dimension.

In order to generate geometric vocabulary, the most widely
used un-supervised method such as k-means is frequently used.
However, each dimension has varying contribution for discrimina-
tion. As a consequence, the traditional k-means lacks of capability
to automatically distribute the weights for each dimension of
feature. In this work, we adopt an enhanced k-means method
which uses Minkowski metric and automatic feature weighting
[44] to generate geometric words more precisely.

After the geometric words C¼ fc1; c2;…; cKg of size K are
obtained, the next step is to quantize the low-level descriptor
space in order to obtain a compact representation. For each point
xAX with the descriptor F(x), we define the feature distribution
θðxÞ ¼ ðθ1ðxÞ;…;θK ðxÞÞT , a K�1 vector whose elements are

θiðxÞ ¼N1ðxÞ exp �‖FðxÞ�ci‖22
kBoF σ2

min

 !
; ð2Þ

the constant N1ðxÞ is selected with the constraint JθðxÞJ1 ¼ 1. The
above equation is a “soft” version of vector quantization, not only
the nearest word is selected, but also some similar words also have
feature value. θiðxÞ can be interpreted as the probability of the
point x to be associated with the geometric word ci. The benefit of
soft quantization is that it can generate more representative
probability feature values. In order to control the range of similar
words selection, two parameters are used in this study, σmin, the
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minimum distance between any two geometric words, and kBoF, a
parameter controlling the decay coefficient for soft quantization.

The disadvantage of bag-of-features is the fact that they
consider only the distribution of the words and lose the relations
between them. In case of shapes, the phenomenon may be more
pronounced due to the poorer of shape features, and consequently
shapes tend to have many similar geometric words. In order to
overcome this problem, text search engines commonly use voca-
bularies consisting not only of single words, but also of combina-
tion of words or expressions. The analogical expression in shapes
would be sets of spatially related geometric words. Being different
from previous works [27,28], we use geodesic to measure relation-
ship between geometric words which avoids the possible influ-
ence from time scale and shape size under the condition of using
heat kernel. Therefore, we define the local geodesic-aware bag-of-
features (LGA-BoF):

VðxÞ ¼N2ðxÞ ∑
xi A � x

∑
xj A � x

θðxiÞθðxjÞT � exp �kgd
gðxi; xjÞ
σgd

� �
; ð3Þ

where σgd is the maximal geodesic distance of any vertices in the
mesh, kgd is distance decay rate which will be discussed in the
experiment section, and N2ðxÞ is a normalization factor which
makes features have a fixed maximum value of 1. The resulting
representation V is a K � K matrix, representing the frequency of
appearance of nearby geometric words of vertices i and j. �x

means a local region of vertex x, we establish the local area
through the geodesic measure and the region size is determined
with a geodesic threshold dl that is an important parameter
discussed in experiment section. This expression not only provides
a position-independent representation of a feature point but also
expresses the relationship between the vertices in the local region.

Some examples of local regions are plotted in Fig. 2. Under the
most common conditions, the local region is a circle area which

just has a boundary. While in some special cases, the boundary
will degrade to several isolated lines. Therefore, traditional meth-
ods [29,30,32], which use rings to represent the local region, might
be failed under this condition. It is worthwhile to note that the
proposed method merely uses descriptors on the vertices in the
local region, which avoids above-mentioned trouble and leads to a
robustness description.

In this procedure, the intermediate representation of the local
region can be got. However, if the number of the words is very big,
the extracted feature will be redundant and inefficient. In this
study we use the deep learning method [9–11] to improve the
performance of the feature.

3.4. Learning local deep feature

Recently, deep learning [9–11] based feature learning has
become a promising research topic, which can extract structural
information from low-level features. Because it does not require
high-level structure to be constructed by human, and the high-
level features are extracted in an un-supervised manner. As a
consequence, it has been successfully applied to image retrieval,
image segmentation, image recognition, speech recognition and so
on, and it is found to achieve highly competitive performance.
However, due to the intrinsic difference between structural of 3D
mesh data (graph data) and image and speech data (constant and
simple structure relationship), it is difficult to be applied to 3D
shape recognition and retrieval directly. In this work, in order to
conquer this limitation, we adopt intermediate representation as
the input of the deep learning, and then use the learned feature in
3D shape correspondence and symmetry detection.

Recent works on deep belief networks (DBNs) [10,11] have
shown that it is feasible to learn multiple layers of non-linear
features that are useful for object classification without requiring
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Fig. 1. The flowchart of the proposed method.
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labeled data. The features are trained layer by layer in a restricted
Boltzmann machine (RBM) [45–47] by means of contrastive
divergence (CD) [47]. The feature activations learned by one layer
RBM become the input data for training the next layer RBM. After
training, the optimized parameters which are good for modeling
the statistical structure in a set of unlabeled data, and the last
layer's output is a kind of highly representative feature which
encodes the input data.

3.4.1. Restricted Boltzmann machines
In order to make the paper more self-contained, we succinctly

discuss the concept of restricted Boltzmann machines. The RBM
is a two layer, bipartite, undirected graphical model with a
set of binary hidden unit h, a set of (binary or real-valued) visible
units v, and symmetric connections between these two layers
represented by a weighted matrix W. The joint distribution
pðv;h;θÞ over the visible units v and hidden units h, given the
model parameters θ¼ fw; a;bg, is defined in terms of an energy
function Eðv;h;θÞ of

pðv;h;θÞ ¼ expð�Eðv;h;θÞÞ
Z

; ð4Þ

where Z ¼∑v∑h expð�Eðv;h;θÞÞ is a normalization factor or
partition function and the marginal probability that the model
assigns to a visible vector v is

pðv;θÞ ¼∑h expð�Eðv;h;θÞÞ
Z

: ð5Þ

For a Bernoulli (visible)–Bernoulli (hidden) RBM, the energy is

Eðv;h;θÞ ¼ � ∑
V

i ¼ 1
∑
H

j ¼ 1
wijvihj� ∑

V

i ¼ 1
bivi� ∑

H

j ¼ 1
ajhj; ð6Þ

where wij represents the symmetric interaction between visible
unit vi and hidden unit hj, bi and aj the biases, and V and H are the
numbers of visible and hidden units. The conditional probabilities
can be efficiently calculated as

pðhj ¼ 1jv;θÞ ¼ σ ∑
V

i ¼ 1
wijviþaj

 !
; ð7Þ

pðvi ¼ 1jh;θÞ ¼ σ ∑
H

j ¼ 1
wijhjþbi

 !
: ð8Þ

where σðxÞ ¼ 1=ð1þexpð�xÞÞ is a sigmoid activation function.
In principal, the RBM parameters can be optimized by perform-

ing stochastic gradient ascent on the log-likelihood of training

Table 1
The statistic timing for each step of the proposed LDF framework. The time unit is
second.

Procedure Sample number All timing Averaged
timing

Geodesic 400 shapes 1049.2 2.623
SI-HKS 400 shapes 471.6 1.179
AGD 400 shapes 2.3 0.005
FPS 400 shapes 1.4 0.003

(400 sample points)
k-means 0.5 M 247.9 –

LGA-BoF 80,000 179.0 0.002
DBN training 80,000 327.7 –

DBN testing 80,000 3.8 4.75e�5
Training

overall
200 shapes 1516.2 –

Testing 200 shapes 945.0 4.7

Fig. 2. Illustration of extracting local regions of six shapes. For each shape, the original shape is drawn in left, while extracted local region is plotted in the right. The feature
points are plotted in red, dl is geodesic distance threshold determining the region size. The last row shows some complex regions which can also be described by the
proposed method. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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data. Unfortunately, computing the extract gradient of the
log-likelihood is intractable. Instead, the CD approximation [47]
is typically used, which has been shown to work well in practice.

3.4.2. Deep belief networks
Stacking a number of the RBMs and learning layer by layer from

bottom to top gives rise to a DBN. It has been shown that the layer-
by-layer greedy learning strategy [10] is effective, and the greedy
procedure achieves approximate maximum likelihood learning. In
our work, the bottom layer RBM is trained with the input data of
LGA-BoFs, and the activation probabilities of hidden units are
treated as the input data for training the upper-layer RBM, and so
on. We use the un-labeled 3D shape data to train the DBN layer-

by-layer. After obtain the optimal parameters θ¼ fw; a;bg, the
inputted LGA-BoFs are processed layer-by-layer with Eq. (7) till the
final layer. And the last layer's output is used as local deep
feature (LDF).

4. Experiments

For evaluating the proposed framework and the novel local
deep feature, experiments on both shape correspondence and
symmetry detection are performed. In the experiments we adopt
the surface correspondence benchmark [48] including Watertight
dataset [49], TOSCA dataset [50], and SCAPE dataset [51] that have
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Fig. 3. Setting parameters experiment on TOSCA. (a) Averaged correspondence accuracy with different geodesic range dl, (b) averaged correspondence accuracy with
different bag-of-words number BoWn and (c) averaged correspondence accuracy with different kGD.
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a variety of objects with ground-truth correspondences. Shape
recognition is also conducted to show the good performance of
LDF on TOSCA dataset and SHREC 2007 benchmark [52].

The Watertight dataset contain a total of 380 objects, the
TOSCA dataset consist of 80 objects, and 71 objects are in the
SCAPE dataset. For each shape dataset, the geometric words are
calculated separately, low-level descriptors on all vertices of the
randomly selected 50% shapes are used to cluster the geometric
words.

For each dataset, the DBN is also trained separately. The
training set is constructed by randomly selecting 50% shapes,
and for each shape, 400 feature points are sampled through FPS.
The procedures of generating LGA-BoF and training the DBNs are
time-consuming, especially in the step of learning model para-
meters of DBNs. We use GPU based deep learning toolbox1 to
accelerate the learning. Compared with Matlab code, the GPU
based deep learning speed up 72 times, and the total training
procedure just costs several minutes.

The actual timings for different step of the proposed method
are listed in Table 1. The timings are measured on a computer with
Xeon 3.2 GHz CPU and 16G memory. Calculating the geodesic and
SI-HKS are the most time consuming two steps, while the times of
other steps are neglectable. Therefore, the proposed method has
competitive performance of computation.

4.1. Experiments on correspondence

The feature discriminative capability of the proposed method is
first evaluated via shape correspondence experiments, while the
recent works on this filed can be found in [48,53,54]. In corre-
spondences experiments, we use above-mentioned three datasets
in surface correspondence benchmark [48] as the ground-truth

data. In order to assess the performance of the proposed method,
we first study the performance of correspondence benchmark
through setting different parameters. We use the raw correspon-
dence, which selects pairs with minimal feature distance as
estimated correspondence, to obtain the performance measures.
The averaged correspondence accuracy is used as the evaluation
measure, where it is calculated by averaging the percentage of
correct correspondences for all pairs of shapes.

Parameters setting: At first, several experiments are conducted
on TOSCA dataset to decide the optimal parameters. We investi-
gate how the region size will affect the correspondence perfor-
mance. Here we set region size dl to 3%–19% of shape's maximum
geodesic among any pair of vertices. The comparison results are
shown in Fig. 3(a), while the horizontal axis represents geodesic
ratio and the vertical axis represents the averaged correspondence
accuracy. The results show that the performance is not satisfactory
when the radius of the region is small. Below 0.08 of the
maximum geodesic, the performance is increasing, however, after
that geodesic range the performance decreases. According to the
observation, we select 0.08 of the maximum geodesic as the radius
for the following experiments.

Then, let us see how the different word number affects the
correspondence accuracy. We set the number to 60, 80, 100, 120,
140, 160, and 180, respectively, and obtain different performances,
which are shown in Fig. 3(b). As can be seen, generally number of
bag-of-words (BoW) has little influence on the accuracy. More-
over, larger BoW number can cause the shortcoming that low
computation performance results from the rapidly increasing
calculation time of LGA-BoF. Therefore, according to the figure,
an optimal BoW number of 100 is selected for the following
experiments.

Next, we study the effects of different kGD. This parameter
controls the decay rate for calculating the LGA-BoF. If a small value
is set, a pair of vertices with large geodesic distance still con-
tributes to the LGA-BoF, on the contrary small contribution will be
made to LGA-BoF. When its value is turned larger, the LGA-BoF will

0.1 1 5 10 20 50 100
35

40

45

50

55

60

65

70

75

80

85

90

kGD

A
cc

ur
ac

y 
(%

)

 

 

cat
centaur
david
dog
gorilla
horse
michael
victoria
wolf
average

Fig. 3. (continued)

1 The GPU based deep learning toolbox can be downloaded from https://
github.com/shaoguangcheng/DeepNet
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degrade to BoF because of losing the neighborhood relationship.
Fig. 3 (c) shows the correspondence accuracy under different kGD.
From the figure, we can see that different kGD has little influence
on the accuracy, and when kGD ¼ 10, the proposed method can
achieve best performance.

From the results of above experiments, we note that the
proposed feature is insensitive to the parameters of BoWn and

kGD, which indicates our feature's robustness. Finally, we select
dl¼0.08, BoWn¼100, and kGD ¼ 10 as optimal parameters accord-
ing to the experimental results, and weighted k-means to apply
into the proposed method for the following experiments. We
construct four layers for DBN including input and output layers.
The number of nodes in each hidden layer is empirically set to
1000 and 800, and the node number of output layer is set to 400.
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Fig. 4. Averaged correspondence accuracy with different categories, and averaged correspondence accuracy for all categories in TOSCA.
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The learning rate is set to be 0.1, the momentum is 0.9, and
maximum epoch is 2000.

Experiment on TOSCA. In order to demonstrate the perfor-
mance of LDF, we compare it with the recent HKS [24], SI-HKS
[25], and ISC [29] descriptors on TOSCA models [50], which
contain nine categories: cat, centaur, david, dog, gorilla, horse,
michael, victoria, and wolf. For each shape, 400 points are sampled
via FPS [43], here we define the geodesic distance between
ground-truth corresponding vertex and matched vertex on the
target shape as geodesic error and spectral correspondence [55] is
adopted here. Comparison results are shown in Fig. 4, where the
horizontal axis denotes the geodesic error and the vertical axis
represents the ratio of correct correspondence, implying that the
proposed feature has a better performance obviously. Also, the
average accuracy on the all TOSCA models is presented in bottom
of Fig. 4, at the geodesic error 0.125 (ratio of geodesic error to
shape's maximum geodesic distance), the accuracy can reach 90%
with the proposed method, while only 78.5% via using SI-HKS,
74.5% via using ISC, and 50.5% via using HKS. Some of the
comparison results are shown in Fig. 5, from which we can
conclude that the proposed LDF with spectral correspondence
outputs best results.

Experiments on Watertight and SCAPE: In addition, we also use
Watertight shapes [49] and SCAPE models [51] and ground-truth

maps from [48] to conduct the comparison experiments with above
correspondence methods: raw correspondence and spectral corre-
spondence [55]. For the Watertight shapes, there are 19 categories.
Experiment result with raw correspondence is plotted in Fig. 6,
indicating that our feature has better performance than SI-HKS for
almost all categories except the ‘bearing’ category. As the ‘bearing’
models just consist of several various of simple geometrical shapes
and the LDF and SI-HKS cannot collect enough information of local
region, both of them have similar performance. Since the original
vertices with the same indexes betweenmodels in the same category
are not corresponding, we cannot get the correspondence points in
this dataset with sampling feature points and spectral correspon-
dence experiment is not conducted on it.

For the SCAPE models, left column in Fig. 7 shows the proposed
feature's good performance with raw correspondence method,
from right column in Fig. 7 we note that at the geodesic error 0.08
(ratio of geodesic error to shape's maximum geodesic distance) the
accuracy can reach 90% with the proposed method, while only
20.1% via using SI-HKS. The outstanding performance of our
feature with spectral correspondence method is obvious.

To evaluate the robustness of the LDF, we perform cross
validation experiments by randomly picking out different sets of
feature points for training the DBN model. The final results of
correspondence are slightly different at each time. The error bars

Raw correspondence by
SI-HKS

Raw correspondence by
LDF

Spectral correspondence by
SI-HKS

Spectral correspondence by
LDF

Fig. 5. Illustration of correspondences of three shapes from TOSCA by using SI-HKS and proposed LDF feature. Two correspondence methods are used, raw correspondence
which selects minimal feature distance between source and target shapes and spectral correspondence method. The first column shows the correspondence results by using
raw correspondence with SI-HKS and the second column demonstrates the results of raw correspondence with proposed LDF. The third column presents the results of
spectral correspondence with SI-HKS and the last column shows the results with LDF. In these figures, the red line indicates wrong correspondence, while the green line
indicates correct correspondence. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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about correspondence accuracies are plotted in Figs. 6 and 7. From
these two figures, we find that the range of accuracy fluctuation
for every category does not exceed 2%. This demonstrates the
robustness of the proposed method.

In addition, we only use SI-HKS as the low-level descriptor to
validate the effectiveness of our framework. Comparison results are
plotted in Figs. 6 and 7. The performances of LDF (only generated
with SI-HKS) have improved much compared with SI-HKS on
correspondence experiments, which shows that the proposed
framework can boost the discriminability of original feature.

From the comparisons of experiments on three datasets, it is
worthwhile to note that the boosting performance from SI-HKS to
LDF on SCAPE and Watertight models is apparently higher than
that on TOSCA. We also find that models in TOSCA are regular and
smooth, while shapes from Watertight and SCAPE datasets consist
of irregular and rough elements. Therefore, we consider that LDF
contains more discriminative information on complex topological

mesh than SI-HKS, which also demonstrates the robustness of our
LDF generated from the novel framework.

4.2. Experiments on symmetry detection

Besides the correspondence experiments, shape symmetry
detection experiment is conducted for evaluating whether the
feature is suitable for the task of detecting shape symmetric
properties. In this experiment, we implement the symmetry
detection in SCAPE models [50] with two methods: the one is
raw symmetry detection method and the other one is based on
spectral correspondence [55]. The averaged accuracy defined with
the ratio of detected symmetric pairs to ground-truth is used as
the evaluation measure.

The DBNs model generated from the previous experiments is
also used here to get the LDF. We simply implement the symmetry
detection, the basic idea is as follows. Different from the original
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Fig. 7. Averaged correspondence accuracy on SCAPE dataset. Left column shows the experimental result with raw correspondence method; right column shows the
experiment result with spectral correspondence method.
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correspondence methods, we find the corresponding points
between the same shape. First, for each feature point of the shape
the second best match is selected as the candidate symmetric
point. Second, if the candidate symmetric point of Pa is Pb, and Pa is
also the candidate symmetric point of Pb, we regard them as a pair
of symmetric points.

The numerical result shows that the accuracy is improved from
SI-HKS (27.5%) to the proposed LDF (33.5%) with 6.0% via raw
symmetry detection method, our feature achieves better perfor-
mance obviously. In addition, we also use spectral correspondence
method to do the symmetry experiment with the proposed
feature, because parameters of the spectral correspondence are
sensitive and should be tuned manually, thereby just several
demos are showing in Fig. 8. Further research on the adaptive
parameters tuning of this symmetry detection based on spectral
correspondence will be investigated in the following study.

4.3. Experiments on recognition

Shape recognition experiment is also tested for evaluating
whether the feature is qualified to correctly classify set of shapes.
In this experiment, we implement a recognition method based on
the idea of Shape Google [28] with the proposed LDF on different
datasets including TOSCA [50] and SHREC 2007 benchmark [52].

The first step is to sample 400 points on the mesh by using the
FPS [43], and then a dictionary is learned through proposed LDF.
The shape's global feature is calculated by using the SS-BoF.

Finally, we train a DBN model with 50% of all the samples, and
test the classification performance with remained data on above
two datasets separately.

The confusion matrices of TOSCA and SHREC 2007 are plotted
in Fig. 9. The average accuracy by using the proposed LDF is 100%
for TOSCA data and 87.5% for SHREC 2007. From the results, we can
draw the conclusion that the proposed local feature also has a
promising prospect for recognition.

5. Conclusion

Extracting high-level local feature for 3D shape is still a
challenging topic up to date, due to the complex structure
compared with image data. In this paper, we present a novel
high-level local 3D shape feature extraction framework for various
applications of 3D shapes.

With the proposed method, in order to preserve the local
geometric information of 3D shape, LGA-BoFs are calculated with
the decay coefficient of geodesic distance. In previous works
[30–32], they have a common limitation that the feature generation
is based on extracted iso-geodesic rings and the extraction of iso-
geodesic rings on complex region may fail, which might decrease the

Fig. 8. Several symmetry detection demos about LDF feature with spectral
correspondence method (on SCAPE dataset).

Fig. 9. Confusion matrices calculated by using the proposed LDF on TOSCA (Top)
and SHREC 2007 (Bottom).
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performance. Compared with these methods, the proposed method
just uses the description of vertices in the region with predefined
geodesic range to encode the intermediate representation, therefore,
this method avoids the problem from the generation of iso-geodesic
rings around feature points and can be implemented with better
robustness. Also, previous methods require interpolation for obtain-
ing equal-spaced nodes, while our method uses the original vertices
on the local area as operational objectives preserving the original and
abundant information of the region.

Furthermore, we introduce deep learning method to learn deep
relationship between intermediate representations and encode
them, which makes the feature full of high-level information and
more discriminative. The experiment results demonstrate that the
learned high-level feature has better performance on correspon-
dence, symmetry detection, and recognition tasks.

Although the proposed framework achieves better perfor-
mance, it has a limitation that no hierarchical information can
be extracted. In fact, this information is very important to further
improve the performance or implement semantic analysis. In the
following works, better method will be researched to make full
use of the advantages of deep learning. In addition, we use a fixed
geodesic ratio to determine the local region which is employed for
generating the intermediate representation, however, for different
parts of 3D model the selection of the region size should be
considered with its structure. To cope with the problem, a scheme
which can adaptively determine the region size according to its
content will be investigated in the future work.
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