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Abstract In this paper, we propose a new style transfer
method for automatic 3D shape creation based on new con-
cepts of style and content of 3D shapes. Our unsupervised
style transfer method could plausibly create novel shapes
not only by recombining existent styles and contents in a
set but also by combining new-coming styles or contents
with the existent ones conveniently. This feature provides
a better way to increase the diversity of created shapes.
The process of shape creation can be summarized as two
stages. First, style and content separation is performed to
analyzed shapes in a set. Second, novel shapes are created
by style transfer. In our setting, contents are first separated
via clustering shapes using a new defined global shape dis-
tance, and then, style parts are clustered into different style
classes. Specifically, style parts are extracted from each pair
of intra-content shapes through comparing their multi-scale
corresponding patches instead of corresponding parts. This
strategy makes the process of extracting style parts become
insensitive to slight geometric changes. The multi-scale cor-
responding patches are obtained via partitioning the two
shapes in a consistent way by the proposed correspondence
transfer. Meanwhile, to quantify the comparison results for
locating style parts, a novel local shape difference function
(LSDF) is introduced. Based on LSDF, extracting a style part
from each shape is formulated as an optimal LSDF threshold
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selection problem. In the experiments, we test our method
in several sets of man-made 3D shapes and obtain plausible
created shapes based on the reasonably separated styles and
contents.
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Shape creation · Local shape difference function

1 Introduction

Nowadays, the two terms of shapes, style and content,
are used to synthesize shapes for novel shape creation
[17,26,28]. In these works, novel shapes are created by
recombining existent styles and contents in a set. This fashion
can be seen as transferring existent styles to existent contents,
which is called as existent style transfer here. Although exis-
tent style transfer is a widely accepted way of creating shapes,
it limits the diversity of novel shapes by merely recombin-
ing existent styles and contents. To increase the diversity of
created shapes conveniently, a new style transfer method is
proposed to include another way of creating shapes which
is called as new-coming style transfer. New-coming style
transfer is able to use new given styles or contents without
repeating the whole analysis procedure. In addition, the pro-
posed style transfer method is based on the new concepts of
style and content of 3D shapes.

The concepts of content and style defined in the previous
applications differ a lot. For example, in [26], contents and
styles of face pictures are represented by different poses of
head and different persons, respectively; in [28], the appear-
ance and anisotropic part scales are regarded as the content
and style of 3D shapes; in [17], content and style of 2D curves
are defined as the global structure and local variation, respec-
tively. In this paper, we propose a new style of 3D shapes
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Fig. 1 The definitions of content and style. Shape a and shape b have
the same content but different styles. Shape b and shape c have the same
style but different contents. The color shown on shape a and shape b
describes the dissimilarity degree between the corresponding parts. The
red means high dissimilarity, while the blue means low dissimilarity.
More details will be explained in Sect. 4.2.2

as the local part variation which is an extension from 2D
curves in [17] to 3D shapes and define the content as the
global structure in the same form as [28] and [17]. Taking
the pots in Fig. 1 for example, shape (a) and shape (b) are both
jugs containing approximately cylindrical bodies and with-
out lids, while shape (c) is a flagon containing a threadlike
spout and a lid. Because of the same global structure, shape
(a) and shape (b) are deemed to be with the same content,
by contrast, shape (c) is with another content. Meanwhile,
we deem shape (b) and shape (c) belong to the same style,
but shape(a) belongs to another, since shape (b) and shape
(c) contain similar handles which differ from the handle of
shape (a) greatly.

Before creating novel shapes, we perform style and con-
tent separation to analyze shapes in an initial set. To analyze
shapes from a coarse to fine resolution, content separation is
first achieved by clustering shapes using a new global shape
distance. Then, style parts are clustered into different style
classes.

Extracting style parts is a key work in our paper. An intu-
itive idea of extracting style part is to compare correspond-
ing segmented parts of two shapes in the feature space, and
then, the most dissimilar part is regarded as the style part
of each shape. However, this idea has three disadvantages.
The first one is that it relies on semantic segmentation which
is still a challenging problem until now. The second one is
that it is difficult to determine how many pairs of semantic
parts to be compared. The third one is that the most dissim-
ilar part may not be a style part since comparing shapes at
part level is sensitive to slight geometric changes. For exam-
ple, it is hard to distinguish desirable handle style parts of
shape (a) and shape (b) in Fig. 1 since their bodies are also
slightly different. The reason of this uncertainty is that the
idea cannot capture the whole difference, such as the dif-
ference between the context of compared parts. Thus, to
reduce dependence on semantic segmentation and the influ-
ence caused by slight geometric changes, we extract style
parts from the most dissimilar regions of two intra-content
shapes by comparing their multi-scale corresponding patches

instead of segmented parts. The comparison process is per-
formed between each pair of intra-content shapes since it is
easier to obtain meaningful dense correspondence between
similar shapes.

By comparing patches in a multi-scale way, the differ-
ence between corresponding patches as well as the differ-
ence between their context can be captured. In each shape,
we accumulate the difference in all scales on each vertex
to contrast the most dissimilar regions to the similar regions
between two compared shapes. After shape comparison, ver-
tices in the region containing style part will stand out with
high dissimilarity degree. This is because, in most of scales,
the difference between corresponding regions containing
content parts is small in terms of geometric and context,
while that containing style parts is big. In order to evaluate
the dissimilarity degree between the corresponding regions,
we quantify the difference on each vertex by a proposed local
shape difference function (LSDF). Based on LSDF, style
parts of compared shapes are extracted by selecting a pair of
optimal LSDF thresholds. This indicates that the style part
of each shape consists of vertices with higher LSDF values
exceed the corresponding threshold.

The main contributions of our paper include the following:

1. We propose a novel framework of style and content sep-
aration by means of a new style of 3D shapes defined as
the local part variation. Novel 3D shapes are created via
transferring extracted styles to contents.

2. Style parts are extracted via comparing multi-scale cor-
responding patches of pairwise shapes and a new func-
tion, local shape distance function (LSDF), is introduced
to quantify the difference between their local regions.
The multi-scale corresponding patches are obtained by
a proposed correspondence transfer which transfers the
point-to-point correspondence to the patch level.

3. We develop an automatic placement method for style and
content parts, which determines their stitching positions
and yields relatively plausible novel 3D models.

4. In order to increase the diversity of created shapes con-
veniently, new-coming style transfer is introduced to use
new given styles or contents without repeating the whole
analysis procedure. This procedure first classifies new
style parts into a similar style class and then substi-
tutes all the existent style parts in this class by the new
style part to synthesize novel 3D shapes with existent
contents.

2 Overview

A set of shapes with uniform scale from a given class are
taken as the input of our algorithm. The procedure of our
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Fig. 2 An overview of our method. First, contents are separated based
on a new defined global shape distance via clustering. Then, the two
intra-content shapes in green, blue, and red circles, are compared at
the patch level in a multi-scale way, respectively. In each shape, the
LSDF is computed to quantify the comparison results for locating the

most dissimilar regions. Then, the style part of each shape is extracted
by selecting an optimal LSDF threshold. Subsequently, styles are sep-
arated by clustering style parts with D2 descriptor and shape contexts.
Finally, novel shapes are created by transferring styles to the existent
contents in the set

method are outlined as follows, and the overview is illustrated
in Fig. 2.

1. Content separation: Shapes in the set are separated into
different content classes via k-medoids clustering. A new
global shape distance is proposed to measure the similar-
ity between shapes.

2. Intra-content shape comparison: To identify the style
part of each shape, we propose a new analysis method
which contrasts it to another shapes in the same con-
tent class via comparing their multi-scale corresponding
patches. In addition, a new function define on the mesh,
LSDF is introduced to evaluate the dissimilar degree
between corresponding regions.

3. Style parts extraction: Based on LSDF, we introduce a
novel method to extract style part from each shape by a
LSDF threshold. Each extracted style part is formed by
vertices with higher LSDF values than the threshold. We
select two optimal LSDF thresholds of compared shapes
jointly, which aims to maximize the dissimilar degree
between extracted style parts and minimize the similar
degree between extracted content parts.

4. Style separation: In this step, we first refine the extracted
style parts to make them as meaningful as possible. Then,
D2 descriptors [18] and Shape Contexts [16] are com-
bined to describe each refined style part. Shapes are
separated into different style classes via clustering their
refined style parts by k-mediods clustering.

5. Shape creation: Novel shapes are created via style trans-
fer which includes two types. One type is called as exis-
tent style transfer and it creates new shapes by transfer-
ring styles to contents in the existent set. Another novel
type, new-coming style transfer, creates shapes by utiliz-
ing new given styles or contents.

3 Related work

3.1 Component-based shape creation

Probabilistic graphical model, such as Bayesian network, has
been used in recent works for shape creation [7,14]. This
model can be trained on manually segmented shapes of a
particular class with semantic labelling and context infor-
mation. Novel shapes are created by sampling this model
via recombining the segments. Another approach to shape
creation evolves a set of shapes that are iteratively fit to a
user’s preferences [29]. With this scheme, novel shapes are
an interpolation of the segmented input shapes. Moreover,
symmetric functional arrangements are proposed to create
functionally plausible model variations using the parts across
different model families in [30]. These works need to segment
shapes in the input set manually, and some of them have to
be provided with context information or labelling. However,
many manual works are time-consuming and not fully auto-
matic. Generally, our work belongs to this category, but style
parts are located and extracted by comparing the multi-scale
corresponding patches automatically rather than segmenting
shapes manually. Furthermore, no context information and
labelling are required.

3.2 Style and content separation

There have been some works on style and content separa-
tion. Early works use different supervised learning meth-
ods to train the presumed parameterized models that rep-
resent the content and style in a set of 2D images [26,27].
Ahmed et al. [9] learn a decomposable generative model that
explicitly decomposes the content from style on manifolds
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representing dynamic objects. Similar ideas are implemented
by statistical modeling using PCA as well [4,5]. Different
from their works, we focus on separating styles and contents
of 3D models.

To create 3D shapes, a recent work on style and content
separation [28] defines the style as anisotropic part scales
of 3D shapes and obtains the inter-style and intra-style part
correspondence based on the co-segmentation method. How-
ever, novel shapes are merely created by varying scales of
segments of each shape; thus, novel shapes lack diversity.
In our paper, the defined style is different from [28], hence
the analysis method and styles to be transferred are different
in essence. Moreover, our style and content separation are
achieved without recourse to semantic segmentation since
many shapes with complex parts cannot always be cut into
semantic segments by segmentation method [22].

To create 2D shapes with curves, Li et al. [17] perform
style and content separation in a set of 2D silhouettes by
analyzing a feature-shape association matrix. Although our
new style of 3D shapes is a natural extension of their 2D
curve’s style, our framework of algorithm is completely dif-
ferent from theirs.

As a means of creating novel shapes by style transfer,
our method not only creates new shapes via existent style
transfer as performed in [28] and [17], but also continuously
enlarges the set via new-coming style transfer. To increase
the diversity of novel shapes conveniently, the new-coming
style transfer could use new given styles or contents without
repeating the whole analysis procedure. This is achieved by
fully exploiting the initial results of style and content separa-
tion. Moreover, it demonstrates the extendible feature of our
style transfer which is similar as the “Translation” function-
ality mentioned in the pioneering work [26].

3.3 Shape comparison

A similar work to our style part extraction is selecting distinc-
tive regions of a 3D shape in [24], but the objective is different
from ours. The distinctive regions of one shape are selected to
distinguish the shape from objects of a different type, while
we aim to locate and extract style parts of two intra-content
shapes. Another similar work develops a novel formulation
for the notion of shape differences by a difference operator
in [21]. The difference operator needs to be derived from
a functional map based on the eigenvectors of the Lapla-
cian matrix proposed in [20]. However, we locate the dif-
ference between shapes by comparing their corresponding
patches in a multi-scale way. This strategy could resist on
the influence caused by slight geometry changes, and more-
over, it has the ability to compare two rigid shapes that are not
isometric.

4 Style-content separation

Shapes to be analyzed consist of man-made triangle meshes
with various contents and styles. The objective of this section
is to separate contents and styles of shapes in a set under the
challenges of different shape structures and various local part
variations. We also introduce a novel LSDF to help recognize
style parts.

4.1 Content separation

In this step, we expect to separate shapes into content clusters
according to their global structures. Since all shapes are from
the same object class and the potential intra-content shapes
may contain geometric changes, it is hard to separate shapes
into content clusters by the traditional global feature distance.
Our solution is to define a new global shape distance which
combines Hausdorff distance [6] with the traditional global
feature distance.

The Hausdorff distance evaluates the similarity between
shapes in term of local features. We choose Wave Kernel Sig-
nature (WKS) [2] as the local feature. The WKS arises from
studying the Schrödinger’s equations governing the dissipa-
tion of quantum mechanical particles on the geometric sur-
face. Considering a quantum particle with unknown position
and different energies on the surface, the WKS of each vertex
describes the average probability of measuring the quantum
mechanical particle at this specific vertex on the surface. By
varying the energy of the particle, the WKS encodes and
separates information from various different Laplace eigen-
frequencies. Thus, in this paper, the Hausdorff distance is
used to measure the difference between shapes in term of
dissipation features.

By capturing the difference between dissipation features,
the Hausdorff distance enlarges the distance between inter-
content shapes. Moreover, the WKS is a Laplacian-based
feature, and it is robust to small non-isometric deforma-
tions [2]. This fact shortens the Hausdorff distance between
intra-content shapes by reducing the influence caused by their
slight geometric changes. Therefore, the Hausdorff distance
makes up for the deficiency of traditional global feature dis-
tance, which makes the new global shape distance become
more discriminative to separate contents.

The traditional global feature distance measures the dif-
ference between shapes in term of Eigen value descriptor
(EVD) [13]. Each shape is represented globally by the eigen-
values of the geodesic affinity matrix. In our setting, the sec-
ond to the tenth largest eigenvalues are used to form a fea-
ture vector denoted as evd(). The proposed distance measure
d(X, Y ) between two arbitrary shapes X and Y is the com-
bination of the traditional global feature distance devd(X, Y )

and the Hausdorff distance dwks(X, Y ) as Eq. 1. Content sep-
aration is achieved by k-medoids clustering using d(X, Y ) as
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the distance measure.

d(X, Y ) = λ ∗ devd(X, Y ) + dwks(X, Y ) (1)

devd(X, Y ) is defined as the L2 norm of vector subtraction
between evd(X) and evd(Y ) as defined in Eq. 2. dwks(X, Y )

is defined as Eq. 3, where d(x, y) = ‖wks(x) − wks(y)‖2
2,

and wks() is the WKS of each vertex. The parameter λ is set
to 0.01 in all experiments.

devd(X, Y ) = ‖evd(X) − evd(Y )‖2 (2)

dwks(X, Y )

= max

{
max
x∈X

{
min
y∈Y

d(x, y)

}
, max

y∈Y

{
min
x∈X

d(x, y)

}}
(3)

The number of content clusters is determined by clustering
validation [10]. The purpose of clustering validation is to
select an optimal number of clusters from several candidate
numbers in term of metrics. Specifically, we obtain a content
clustering result with each candidate number, and then the
metrics is used to evaluate how well the contents are separated
into the specified candidate number. The candidate number
with the biggest metrics value will be selected as the optimal
number of content clusters. The involved metrics is Dunn
index [10] which assigns big score to the clustering result
that produces clusters with high intra-cluster similarity and
low inter-cluster similarity.

4.2 Intra-content shape comparison

To extract style parts, two intra-content shapes are com-
pared at the patch level in a multi-scale way. The dissimilar
degree is quantified by a scalar value function, LSDF, which
sums up the dissimilarity between multi-scale correspond-
ing patches on each vertex. Two compared shapes form a
comparison pair, one of them is regarded as a target shape
(shape T ) and the other is regarded as a reference shape
(shape R).

To locate and extract style parts, the comparison should
have two properties. First, the comparison between corre-
sponding patches is performed in several scales, and the
number of patch pairs is increased gradually in each scale.
This property means the size of patches is changing from big
to small for capturing the difference between corresponding
regions in term of geometric and context. Second, in each
scale, the corresponding patches should have a similar size
and locate at the similar relative position on each shape. This
property guarantees that we are comparing the corresponding
regions of two shapes with similar size.

According to these properties, two steps are required to
prepare for the comparison. The first step is to partition the
two shapes into patches in a consistent manner. This step aims
to reduce the difference caused by the size and the location

of potential corresponding patches. The second step is to
establish the correspondence between these patches. In the
following subsection, we describe our solution of obtaining
this kind of multi-scale corresponding patches which require
to partition two compared shapes in a consistent manner as
a prior.

4.2.1 Obtaining multi-scale corresponding patches

A traditional flow of obtaining corresponding patches
includes the following steps. First, partition each shape into
patches separately, and then, find the correspondence in the
feature space. However, this flow is not suitable for com-
paring corresponding regions to extract style parts, because
it cannot partition the two different shapes in a consistent
manner. For example, the two shapes in Fig. 3a are parti-
tioned into 20 patches, respectively; however, it is hard to
quantify the dissimilarity between corresponding regions by
comparing patches.

In each scale, to partition two shapes in a consistent way,
we propose to partition shape R into patches as a template first
and then partition shape T in the same way as the template.
Specifically, shape R is partitioned by spectral clustering;
then a proposed method, correspondence transfer, is used to
partition shape T . In addition, correspondence transfer estab-
lishes the patch-to-patch correspondence along with parti-
tioning shape T . The point-to-point correspondence between
vertices of the two shapes is transferred to the multi-scale
patch level by correspondence transfer. The corresponding
patches obtained in a specified scale by correspondence trans-
fer are shown in Fig. 3b, and they meet the requirements of
comparing corresponding regions. The details of the afore-
mentioned process are listed below:

1. Point-to-point correspondence: For each comparison
pair, point-to-point correspondence is first established
between the two sets of vertices. It provides the source
correspondence for correspondence transfer in all scales.
The point-to-point correspondence is established through
an injective mapping function � symbolized as � :
T → R. As EVD is used to describe shapes to separate

Fig. 3 a The patches obtained via partitioning shapes by spectral clus-
tering, respectively; the color of each patch does not indicate patch
correspondence. b Corresponding patches obtained by correspondence
transfer. The color of each patch shows correspondence information
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       Sum up dissimilarity between 
    corresponding patches in all scales

Fig. 4 The process of comparison at the patch level, where the point-to-point correspondence is shown briefly

contents, here, for saving computation cost, we also resort
to the spectral method [12] to obtain � in the spectral
domain.
The method in [12] operates on spectral embeddings
obtained from eigenvectors of geodesic affinity matrix
so as to normalize them with respect to uniform scal-
ing and rigid-body transformation. Then, non-rigid align-
ment and proximity-aided matching are used between
the two sets of spectral embeddings. Specifically, non-
rigid alignment is performed for optimizing a global
correspondence cost. However, it is hard to distinguish
between near-by points in the dense correspondence. To
improve correspondence locally, proximity-aided match-
ing is used with selecting some anchor points pairs.
Anchor points pairs are points that are best matched.
Based on the anchor pairs, the correspondence cost of
arbitrary two points is defined via combining L2 dis-
tance between their spectral embeddings with the differ-
ence between their geodesic proximities to these anchor
points. In our experiments, we select four pairs of anchor
points to establish a meaningful �. In Fig. 4, � is briefly
demonstrated in the leftmost column. The shape with blue
vertices is T , and the one with red vertices is R.

2. Partition shape R: In each scale s, faces of R are merged
into Ks patches via spectral clustering. The partitioned R
provides a template for partitioning T . An affinity matrix
is first constructed by the connectivity of vertices on R.
The entry of the affinity matrix is either one or zero, which
indicates whether two vertices are connected by an edge.
In the second column from the left of Fig. 4, shape R is
partitioned into patches via spectral clustering in multi-
scale; the results are shown in scale Ks = 20, Ks = 10

and Ks = 2. Each patch on R is labeled as Ps
m , where

m ∈ {1, 2, · · · , Ks}.
3. Correspondence transfer: In each scale s, partition-

ing T and establishing patch-to-patch correspondence
between T and R are implemented by correspondence
transfer. Constrained by point-to-point correspondence
�, shape T is first partitioned into K ′

s patches in a consis-
tent way as partitioning shape R. Then, the patch-to-patch
correspondence �s is established accordingly. As �, �s

is also an injective mapping, such that �s : T → R.

Specifically, to partition shape T , correspondence transfer
uses an inference, that is, if a set of vertices on R are the same
patch, then their corresponding vertices on T are going to
form a patch too. For example, assuming a set of vertices R j

belongs to patch Ps
m on R, then the inference forms a patch Qs

n
on T by the corresponding vertices of R j , �−1(R j ), where
�−1(R j ) ∈ Qs

n . In this way, T is partitioned into patches Qs
n

as partitioning shape R, where n ∈ {1, 2, . . . , K ′
s}.

Moreover, correspondence information from � is trans-
ferred to the patch level by establishing �s , such that
�s(Qs

n) = Ps
m . In the third column from the left of Fig. 4,

correspondence transfer partitions shape T in a consistent
way as partitioning R along with establishing �s .

4.2.2 Quantify shape comparison

After obtaining the corresponding patches in each scale, we
perform shape comparison by comparing each pair of cor-
responding patches via computing their distance in the fea-
ture space. The result of shape comparison is quantified by
summing up the dissimilarity between corresponding patches
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in all scales. A vertex-based scalar function, LSDF, is used
to quantify the dissimilarity degree between corresponding
regions of two shapes.

Assuming that shape (a) and shape (b) in Fig. 1 form a
comparison pair, the desirable comparison result evaluated
by LSDF is illustrated with color. The red part of each shape
consists of vertices with high LSDF values, which repre-
sents high dissimilarity degree between the two red parts;
while the blue part consists of vertices with low LSDF val-
ues, which represents low dissimilarity degree between the
two blue parts.

The feature of each patch is the combination of the nor-
malized sum of WKS and Shape Contexts (SC). The WKS
of each vertex has been explained in Sect. 4.1, and here SC
of each vertex is calculated to capture its spatial context. The
feature of a patch X is denoted as Eq. 4, where num is the ver-
tex number in patch X . D(X) is formed by a 100-dimensional
WKS vector and a 3375-dimensional SC vector.

D(X) =
{

1

num

∑
i∈X

wks(i)
1

num

∑
i∈X

sc(i)

}
(4)

The computation processes of LSDF on shape T and shape
R are slightly different since the patch-to-patch correspon-
dence �s is an injective mapping from T to R. In each scale
s, LSDF of each vertex on T and R is defined as Eqs. 5 and
6, respectively.

LSDFs(Ti ) = ‖D(Qs
n) − D(�s(Qs

n))‖2
2 (5)

where Ti ∈ Qs
n . LSDFs(Ti ) is the difference between the

patch Qs
n and its corresponding patch �s(Qs

n).

LSDFs(R j )

=
⎧⎨
⎩

‖D(Ps
m) − D(�−1

s (Ps
m))‖2

2 if �−1
s (Ps

m) exist,

min
n∈[1,K ′

s ]
D(Ps

m) − D(Qs
n)‖2

2 otherwise,
(6)

where R j ∈ Ps
m . �−1

s (Ps
m) denotes the corresponding patch

of Ps
m . For the patch on R that no patch on T corresponds to,

the LSDFs values of vertices in it are the distance between it
and its most similar patch on T .

LSDF of each vertex on T or R is the sum of LSDFs in all
scales as Eq. 7. In Fig. 4, the computation process of LSDF
is shown in the rightmost column. The black circle and black
square represent a vertex on R and a vertex on T , respectively.
Take the black square for example; its LSDF value is equal to
the sum of dissimilarity between two corresponding patches
in all scales. In each scale, one of the two corresponding
patches is the patch that the square belongs to. The LSDF of
the two shapes are similar as the idealized comparison result
of shape (a) and shape (b) in Fig. 1.

LSDF(Ti or R j ) =
S∑

s=1

LSDFs(Ti or R j ) (7)

4.3 Style part extraction

The objective of computing LSDF is to locate the region con-
taining style part of each shape. In this section, we consider
extracting style part from the region with high LSDF values.
Here, extracting style part is solved by an optimization which
selects a pair of LSDF threshold jointly via considering the
following three aspects.

First, it is expected to contrast each pair of shapes to filter
out their own style parts. The larger their difference is, the
easier style parts are extracted. On the contrary, it is desirable
for their content parts to be as similar as possible. Second,
the two style parts should be extracted accurately, and this
is reflected from the area proportions of style part and con-
tent part. The second aspect will confine selecting big but
not accurate style part to meet the first aspect. Third, LSDF
values of vertices in style part should have relatively high
contrast with the ones of vertices in content part. Based on
the above aspects, the objective function is constructed as
follows:

arg min
Ct ,St ∈T
Cr ,Sr ∈R

m(Ct ) ∗ m(Cr ) ∗ ‖D2(Ct ) − D2(Cr )‖2
2

a(Ct ) ∗ a(Cr )

−m(St ) ∗ m(Sr ) ∗ ‖D2(St ) − D2(Sr )‖2
2

a(St ) ∗ a(Sr )
, (8)

where Ct and Cr are the potential content parts of T and R,
St and Sr are the potential style parts of T and R. m(X) is
the mean of 10 minimum LSDF values in part X , and a(X)

represents the surface area proportion of part X . D2(X) is the
D2 distribution [18] of part X . Essentially, D2 distribution
is the histogram of pairwise Euclidean distances between
the points uniformly sampled from the surface. It measures
global geometric properties of an object. The dimensional of
D2 vector is 40.

In order to solve the above optimization problem, an adap-
tive way is deployed to select two optimal thresholds, which
minimizes the objective function by splitting each shape into
two parts. For each comparison pair, the optimal thresholds of
T and R are selected among three pairs of candidate thresh-
olds jointly. The candidate thresholds are obtained via three
famous methods. The first method is grey-level histogram
from Otsu [19]; the second method computes thresholds
using equation as

√
2 ∗ ln(X), where X is the vertex num-

ber of T or R; the third method is the minimax thresholding
[8]. The two shapes are cut into style parts and content parts
by each pair of candidate thresholds respectively. On each
shape, vertices with higher LSDF values than the correspond-
ing threshold comprise the style part(St or Sr ); meanwhile,
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the remaining vertices comprise the content part(Ct or Cr ).
Finally, the two style parts are extracted by selecting one of
the three pairs of thresholds which minimize Eq. 8.

4.4 Refined style part

The extracted style parts may be not as semantic as they sup-
posed to be and their boundaries may be irregular, such as
the red part in Fig. 5a. To obtain reliable part features for
style separation and reasonable boundary for style transfer,
we refine the extracted style parts. In each shape, the bound-
ary between extracted style part and extracted content part is
adjusted by Gaussian Mixture Models (GMM) and Graph-
cut [15].

Our strategy is to re-classify vertices in the region near
the boundary so that the style part is refined further to be
more reasonable. Specifically, the vertices to be re-classified
locate within 20 % of the longest geodesic distance from
the extracted boundary, and they are located in the green
region in Fig. 5b. Each selected vertex i is described by a
two-dimensional vector including its LSDF value and SDF
value [23] which is denoted as [LSDF(i) SDF(i)]. Then,
GMM with two Gaussian components are fit using these fea-
ture vectors via the Expectation–Maximization (EM) algo-
rithm. The GMM assign each selected vertex to style part and
content part xi in the form of probability P(i |xi ). In Fig. 5c,
the probability of assigning vertices to style part is shown in
color. The vertices in red region indicate that they belong to
style part with high probability. Finally, the selected vertices

 obtained by Graphcut

(b)  Vertices to be re-classified(a) Extracted style part with boundary

(d) Refined style part (c) Probability of assigning vertices 
           to style part by GMM

Fig. 5 The process of refining extracted style part

are re-classified into refined style part and refined content part
along with adjusting the boundary by Graphcut as shown in
Fig. 5d. The Graphcut minimizes the following energy func-
tional Eq. 9, which is built from the data term e1, and the
smoothness term e2:

E =
∑

i∈Selected

e1(i, xi ) + ω ∗
∑

(i, j)∈Connected

e2(xi , x j ) (9)

e1(i, xi ) = − log(P(i |xi ) + ε) (10)

e2(xi , x j ) =
{

− log(|SDF(i) − SDF( j)| + ε) xi �= x j

0 xi = x j

(11)

In Eq. 9, ω is a parameter defining the degree of smooth-
ness. Equation 10 is used to put the new boundary in
the region containing big SDF changes. The result of the
Graphcut algorithm is a smooth partitioning of the selected
region, clearly isolating a more meaningful style part than
the extracted one as shown in red parts in Fig. 5a, d. The
refining process provides parts with reasonable boundary for
style transfer. In the following, to avoid confusion, we still
use style part and content part to refer to the refined style part
and the refined content part.

4.5 Inter-content style parts correspondence

To guarantee the following style separation to be significa-
tive, we should make sure all the inter-content style parts
have correspondence. We select one shape from each content
class randomly, and align one of selected shapes to the others
by ICP method [3], respectively. Specifically, each aligned
shape is represented by the geometric centers of content part
and style part. If the geometric centers of style parts in each
aligned pair are the nearest neighbors in term of coordinates,
the two style parts are deemed to have correspondence. In this
way, inter-content style correspondence is obtained through
the set.

4.6 Style separation

When separating styles, D2 distribution and the normalized
sum of shape contexts are combined to describe each style
part. The similarity between style parts are measured by
Euclidean distance. The length of D2 vector is 40, and the
length of shape contexts is 3375. Style separation is achieved
by k-medoids clustering, and the number of style clusters is
determined by clustering validation as determining the num-
ber of content clusters.
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5 Style transfer

Style transfer resolves how to use the results of style and con-
tent separation to create novel shapes automatically. In this
paper, shape creation is realized at the part level via com-
bining a content part and a style part by style transfer. The
involved two parts are selected from a specified content class
and a specified style class, respectively. In order to make a
created shape plausibly, we have to deal with two challenges
when performing style transfer. First, how to place a content
part and a style part from different source shapes? Second
how to stitch the two parts? Next, we will describe our solu-
tions to the two challenges.

5.1 Placements of style part and content part of a created
shape

We adopt rigid ICP [3] to determine the placement of style
part and content part of a created shape according to three
cases. In each case, the process of alignment is performed
via two steps. The first step performs coarse alignment which
aligns two parts or two source shapes coarsely. The second
step performs fine alignment which adjusts the location of
style part and content part of the novel shape by aligning
their boundaries. Here, the boundary also denotes the border
adjoining the content part and the style part of each source
shape. The boundary alignment is performed through align-
ing two sets of points. Each set of points contains not only the
points on the boundary but also the geometric center of the
source shape. The geometric center is regarded as a constraint
to prevent the boundary from turning over in the process of
fine alignment.

The first case is shown in Fig. 6a, where a novel shape
D is created with the help of other three shapes A, B and
C. To increase alignment accuracy, we place the content part

and style part of D in an indirect way. We use shape B as
a bridge connecting shape A and shape C. Shape B has the
same content as shape A and the same style as shape C.
Then, we align the style part (in red) of C to the style part
(in red) of B so as to obtain a transformation matrix M1.
The coarse placement of content part (in green) of D is deter-
mined by performing rigid transformation on the content part
(in green) of C according to the transformation matrix M1.
Similarly, we align the content part (in red) of A to the con-
tent part (in red) of B so as to obtain another transforma-
tion matrix M2. The coarse placement of style part (in blue)
of D is determined by performing rigid transformation on
the style part (in blue) of A according to the transformation
matrix M2.

However, if B is unknown, the second case is introduced
to place style and content part of the novel shape which is
created by exchanging the content part and style part of A
and C. Fig. 6b shows the second case. In this case, shape C
is aligned to shape A globally in the coarse alignment step,
which is different from individual style part alignment and
content part alignment used in the first case.

The third case is designed for creating novel shapes using
a new style part or a new content part without repeating the
whole analysis procedure. With fully exploiting the initial
result of style and content separation, the new shape part is
combined with all complementary shape parts in the existent
set to form novel shapes. If the new-coming shape includes
new style and new content at the same time, the third case
is equivalent to the second case. If the new-coming shape
includes only one new factor, taking the new style for exam-
ple as shown in Fig. 6c, the style part of shape C is first clas-
sified into the most similar style class by K nearest neighbor
classifier (K = 3). This is achieved via comparing the new-
coming style part with all style parts in the set in term of
the D2 descriptor and the normalized sum of shape contexts.

content part
alignment

style part
alignment

A

B C

content a
(red body)

content b
(green body)

style a
(blue handle)

rt
nt

C

A

le)

D

style b
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A

CB

D

global shape

alignm
ent

(a) (b)
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style part
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CB
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Fig. 6 The placements of style part and content part of the created shape are determined via aligning by rigid ICP. a The first case. b The second
case. c The third case
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Fig. 7 a The affinity matrix of
shapes in the teapot set. The
darker the cell in the matrix, the
closer the two shapes. b Dunn
index is used to determine how
many content clusters actually
exist

(b)(a)
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Then, the new-coming style part replaces all the style parts
in the same style class via coarse alignment. In Fig. 6c, the
style part of shape A is replaced by the new style part of
shape C; then, a novel shape B is created. A similar process
is performed when the new-coming shape includes only a
new content.

The three cases are suitable for different situations of cre-
ating novel shapes. The first two cases are designed for exis-
tent style transfer, while the third case is specially designed
for new-coming style transfer with one new given style or
content.

Actually, the second case could handle all the placements
of parts of novel shapes obtained by existent style trans-
fer, while the reason of designing the additional first case
is that we want to place the parts of novel shapes as plausi-
bly as possible. This requires each alignment has to be per-
formed between similar parts to the greatest extent. Thus,
novel shapes are created according to the first case with high
priority, since the part alignments are all performed in the
same content cluster or in the same style cluster.

5.2 Part stitching

Part stitching is not our focus; thus we merely merge a
style part and a content part into a complete shape via
connecting their paired boundaries. The automatic stitching
process includes the following steps: first, the correspon-
dence between the two sets of vertices on the boundaries
are established by matching their relative position on each
ring. Second, corresponding vertices are connected by edges,
respectively. For the boundary that does not have a partner to
become a pair, we will fill it as a hole. Readers can refer to
recent advanced part stitching methods [11] and [1] to obtain
further reasonable effects.

6 Results

In this section, we show experimental results of style and
content separation and shape creation by style transfer in
several sets of shapes. In the experiments, the sets of man-
made shapes include goblets, teapots and sport bottles.

Content separation. We show the experimental results of
content separation in the set of teapots. Their affinity matrix
describes separation effect, as shown in Fig. 7a. Darker color
indicates the two shapes have more similar content. Shapes
are clustered into different content categories with their affin-
ity matrix, and the cluster number is set automatically accord-
ing to Dunn index. The optimal cluster number is the candi-
date number with the largest Dunn index. Figure 7b repre-
sents the relationship between metrics values and candidate
cluster numbers. The optimal number of content cluster is
consistent with the ground truth.

Correspondence transfer. We present several results of cor-
respondence transfer, as shown in Fig. 8a. In this scale, Ks

is equal to 20 in all comparison pairs. The resulting corre-
sponding patches in each comparison pair are marked in the
same color. It can be seen that correspondence transfer par-
titions each pair of shape T and shape R in a consistent way
and establishes meaningful patch-to-patch correspondence
although shapes contain different style parts. In addition, the
obtained patch-to-patch correspondence is suitable for com-
paring regions with similar relative positions on shapes.

Style part extraction. We present the results of style part
extraction for the three sets. Before extracting style parts
in these sets, a range of patch numbers is set for each set
in order to be adaptable for different sizes of style parts. For
example, we set 2,4,…,20 and 6,8,…,20 and 8,10,…,20 as the
patch number variation ranges which represent scales for the
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Fig. 8 The two shapes in each
column consist of a comparison
pair. a The patch-to-patch
correspondence in the scale
Ks = 20. b The LSDF of each
shape after comparison. c The
extracted style part and content
part of each shape are marked in
red and blue, respectively. d The
refined style part and content
part of each shape are marked in
red and blue, respectively

Shape T

Shape R

(a)

Shape T

Shape R

(b)

Shape T

Shape R

(c)

Shape T

Shape R

(d)

sets of goblets, teapots and sport bottles, respectively. After
performing pairwise shape comparisons, the LSDF of each
shape in these sets is shown in Fig. 8b. The region with high
LSDF values of each shape contains style part. According
to solution of the optimal problem mentioned in Sect. 4.3,
the style part of each shape is extracted, as shown in Fig. 8c.
These results validate the first two contributions in Sect. 1.
The refined style parts and content parts are shown in Fig. 8d.

Style separation. We present style separation results of the
goblet set. Refined style parts are clustered according to their
feature distances which are indicated by an affinity matrix, as
illustrated in Fig. 9a. Dunn Index is adopted to evaluate the
results of clustering styles into candidate numbers in Fig. 9b.

The optimal number of style clusters is obtained with the
highest Dunn index value. In this example, the style cluster
number is set to three automatically.

3D shape creation by style transfer. The results of 3D shape
creation by style transfer are exhibited for the three sets,
respectively. In Fig. 10, we see that the goblets are reason-
ably separated into clusters in term of different styles and
contents. Goblets in green out of the red frame are novel
shapes created by existent style transfer. When new goblets
(in blue frames) with new given content part or style part are
provided sequentially, the goblets in green appeared in the
red frame are created by new-coming style transfer. We also
test our algorithm in the teapots set and sport bottles set, and
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Fig. 9 a The affinity matrix of
the refined style part marked in
red in each shape. b Dunn index
is used to determine how many
style clusters actually exist
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Fig. 10 The results of style and content separation and novel shape
creation for goblet set (row style, column content). The novel shapes
are marked in green. The novel shapes in the red frame are created
by new-coming style transfer; the others are created by existent style
transfer

we all get satisfactory results as shown in Fig. 11. The results
shown in Figs. 10 and 11 demonstrate the capability of our
algorithm in separating style and content and generating rea-
sonable shapes by style transfer. These results validate the
last two contributions in the Sect. 1.

Comparison with previous applications. Due to the differ-
ent definitions of style and content, it is hard to compare our
method with other similar applications quantitatively, such
as [28] and [17]. However, new-coming style transfer is our
advantage over previous applications. It provides a new way
to enhance the diversity of created shapes via using new styles
and contents conveniently.

7 Discussions, limitations and future work

Discussions. In this paper, we consider local part variation
as a style of 3D model and discuss the feasibility of creating
novel shapes based on separating styles and contents in a
set. This is a preliminary attempt to separate styles from a
set of shapes by analyzing the set without utilizing semantic
segmentations of shapes. The unsupervised process depends
on comparing each pair of intra-content shapes at the patch
level in a multi-scale way and fully exploits their difference.
Capturing the difference is converted to solve the problem of
style part extraction. 3D novel shapes are created by means
of automatically transferring style to other contents in the set.
We are able to enlarge the set continuously and enhance the
diversity of novel shapes using new-coming styles or contents
without repeating the whole analysis procedure. It is worth
mentioning that there are few parameters needed to be set
throughout our method.

Limitations. An obvious limitation is that our method cannot
analyze non-rigid shapes and shapes with significant varia-
tions. On the one hand, this limitation lies in the discrimina-
tive ability of our new defined global shape distance measure
in the content separation. Since our distance measure can-
not learn from training examples, recognition of the same
content among similar shapes has to depend on geometric
distance without any semantics. For example, global fea-
ture distance and local feature distance can be employed.
On the other hand, our shape comparison strategy is based
on the dense correspondence; however, it is difficult for the
state-of-the art dense correspondence to establish correspon-
dence between shapes with large geometric variations. Thus,
it is a big challenge for our method to handle shapes in
the Princeton Shape Benchmark [25] which contains non-
rigid shapes and complex shapes. In addition, our method
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New shapes
with known

content and style

(a)

(b)

New shapes
with known

content and style

Fig. 11 Style and content separation and novel shape creation for
teapot set in a, and sport bottle set in b (row style, column content).
The novel shapes are marked in green. The novel shapes in the red
frame are created by new-coming style transfer; the others are created
by existent style transfer

may creates unnatural shapes, such as the created shapes in
the first column and last row in Fig. 11a. This is because
our method cannot automatically determine the visually rea-

sonable relative size of the style part and content part of
novel shapes. Last, to separate styles and contents in the
initial set, the input shapes are required to be formed by
the proposed styles and contents; otherwise our method may
fail.

Future work. To handle complex shapes, it is worth trying
to develop a new dense correspondence method. Another
interesting direction is how to analyze a set of shapes with
global abstract style, such as architecture style, and transfer
this type of style to generate richer models. Moreover, we
will explore whether it is feasible to analyze the content and
style of a set of scenes and create new scenes composed of
different styles and contents.
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