
Multimed Tools Appl
DOI 10.1007/s11042-016-3524-x

Semi-direct tracking and mapping with RGB-D camera
for MAV

Shuhui Bu1 ·Yong Zhao1 ·Gang Wan2 ·Ke Li2 ·
Gong Cheng1 ·Zhenbao Liu1

Received: 31 October 2015 / Revised: 20 March 2016 / Accepted: 7 April 2016
© Springer Science+Business Media New York 2016

Abstract In this paper we present a novel semi-direct tracking and mapping (SDTAM)
approach for RGB-D cameras which inherits the advantages of both direct and feature
based methods, and consequently it achieves high efficiency, accuracy, and robustness. The
input RGB-D frames are tracked with a direct method and keyframes are refined by min-
imizing a proposed measurement residual function which takes both geometric and depth
information into account. A local optimization is performed to refine the local map while
global optimization detects and corrects loops with the appearance based bag of words and a
co-visibility weighted pose graph. Our method has higher accuracy on both trajectory track-
ing and surface reconstruction compared to state-of-the-art frame-to-frame or frame-model
approaches. We test our system in challenging sequences with motion blur, fast pure rota-
tion, and large moving objects, the results demonstrate it can still successfully obtain results
with high accuracy. Furthermore, the proposed approach achieves real-time speed which
only uses part of the CPU computation power, and it can be applied to embedded devices
such as phones, tablets, or micro aerial vehicles (MAVs).
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1 Introduction

With the rapid development of computer techniques, multimedia applications have been
extensively used into our daily life. Most applications are based on images [19–23, 43, 44,
50], however we live in a 3D space, as a consequence using 3D data [2–5, 29] to represent
the world is intuitively better than just using 2D images which are just projections of the
3D world. In recent years, simultaneous localization and mapping (SLAM) is one of the
hot researches in robotics and computer vision community. The information of workspace
map and robot location is essential for unmanned micro aerial vehicle (MAV) or any other
robot to perform tasks in unknown environments. Flighting MAVs in unknown indoor envi-
ronments, for example, demand real-time poses and orientation information for obstacle
avoidance, motion planning, and navigation [9].

A series of sensors have been explored for this problem in the last few years, includ-
ing monocular cameras, 2D laser scanners, and RGB-D sensors like time of flight (TOF)
cameras or Microsoft Kinect [7, 9, 10, 16–18, 30, 51]. The mature technique is Light Detec-
tion and Ranging (LiDAR), but it only exploits 2D barriers information [16]. It best fits
in environments characterized by vertical structures, but may fail in complex scenes, since
most LiDARs only detect barriers that intersect the sensing plane. RGB-D sensors which
provide both color and depth images directly have become a popular choice for dense
reconstruction of unknown indoor environments. TOF cameras are quite expensive which
baffles the wide application, nevertheless Microsoft Kinect offers a valuable alternative way,
since it provides dense and high-frequency depth information with a low price, size, and
weight.

In this paper, we propose a novel RGB-D based tracking and mapping system, which
combines direct and feature based methods together seamlessly to improve the perfor-
mances. Most feature based methods minimize re-projection pixel errors, however, they
suffer from the absence of depth information. In order to improve the robustness, a novel
measurement error function is proposed to appropriately mix depth and geometric infor-
mation. Compared with state-of-the-art works, our method achieves higher accuracy and
robustness just using CPU, which has great potential to be applied to embedded devices. In
brief, there are three main contributions as follows:

1. To efficiently exploit captured information, the direct method is adopted to track current
motion with high-speed, followed with a motion refinement based on feature corre-
spondences. Therefore, an elegant balance between accuracy and efficiency can be
realized.

2. A novel error function based on mixed depth and geometric measurements is designed
to achieve high accuracy and robustness for pose estimation.

3. We create a large scale dataset which consists of several long trajectories. In addition,
the dataset contains fast motion, repetitive scenes, and even lost depth information. The
dataset is public available on a website, and therefore, researches can use it to evaluate
their methods on this dataset.

Extensive experiments are conducted to evaluate the performances of the proposed
approach. Several quantitative evaluations are presented in Section 4, which contain
not only the trajectory and reconstruction quality but also computational performances.
From the experiments, we can conclude that the proposed method can achieve superior
performance.
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2 Related work

A substantial number of works for camera pose optimization using RGB-D data have been
published over the past few years. We classify them into following categories.

Feature based methods The first RGB-D SLAM is explored to estimate the pose of
Kinect and reconstruct the indoor environment by Henry et al. [25]. They extract scale
invariant feature transformation (SIFT) features [31] by SIFTGPU [49] from color images
and match them to previous keyframes. Random sample consensus (RANSAC) is applied
to refining these matches and then computing an initial transformation which is refined
again using RGBD-ICP based on iterative closest point (ICP) algorithm [36]. Loop closure
is detected with both color and depth information, and a sparse bundle adjustment method
[45] is adopted to achieve global consistency. A similar method is proposed by Endres et al.
[8]. Rather than only SIFT, other features including Speeded up robust features (SURF) [1]
and Oriented FAST and Rotated BRIEF (ORB) [35] are also used, g2o solver [15] instead
of bundle adjustment is applied to accomplishing global optimization.

Direct methods Newcombe et al. propose a frame-model solution, KinectFusion [34],
which matches the current RGB-D images to the model surface on GPU rather than a
keyframe to increase localization accuracy. The method uses an ICP variant for registration,
and updates the scene model after new images tracked without RGB information. Rather
than the ICP approache, Bylow et al. present a method which estimates the camera pose by
directly minimizing the error with a signed distance function (SDF) [6].

Since both of the above methods rely on depth data for localization, they may fail at the
circumstances of lacking geometric information. To handle such failure, Lee et al. propose
RGBD-Fusion [28] which exploits both depth and visual information. However, it is still
limited to small workspaces because of the inevitable drift in large environments, further-
more too much GPU memory and extensive computational power are required to process
the dense scene model. Steinbrucker et al. propose a direct method which achieves real-time
performance with only CPU needed [38]. The proposed method estimates camera motions
by minimizing an energy function based on gray residuals and the depth data is used for
mapping the pixels between RGB-D images. This gives better result than ICP based SLAM
under circumstances with small displacements. Kerl et al. [26] propose a robust error func-
tion based on the t-distribution to reduce the influence of large residuals, which makes
it insensitive to noises and outliers. They further propose a method which combines both
gray and depth data residuals [27]. In addition, an entropy-based criterion is introduced for
keyframes selection and loop closure detection followed by a pose graph optimization. Sim-
ilar approach is also employed in semi-dense monocular SLAM algorithm like large-scale
direct monocular SLAM (LSD-SLAM) [11].

Glocker et al. [47] proposed a VolumeFusion method to solve the limitations by repre-
senting the volumetric map with a rolling cyclical buffer and optimize the trajectory by a
pose graph while loops are detected with the bag-of-words (BoW) based detector [12] using
SURF descriptors. Rather than optimizing the global trajectory, Whelan et al. propose Elas-
ticFusion [48], which performs the global dense surfel-based maps optimization through
non-rigid surface deformations after the loops are detected using randomized ferns [13].
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Comparison Direct methods achieve higher robustness in feature-less environments by
using more information rather than only keypoint correspondences. However, they have
some limitations compared with feature-based solutions. First, direct methods seem to lack
robustness against moving objects, since pixels from small baselines may lead to many
error correspondences and result in poor motion estimations or even lost. Second, some
researches show that bundle based optimization is more accurate than a pose-graph opti-
mization where sensor measurements are discarded, since the bundle adjustment optimizes
both cameras and map over sensor measurements [33]. Moreover, direct methods also accu-
mulate drift over frames while frame-model approach like KinectFusion has much smaller
drift.

Our method inherits the advantages of both feature-based and direct approaches. First,
our method handles small baselines with direct approach and wide baselines with keypoint
correspondences. The procedure keeps a small drift over hundreds of frames without global
optimization, and keyframes contain sensor measurements which enables a global optimiza-
tion for better results. Second, it is very efficient since most frames are tracked directly from
small baselines and features are only detected in keyframes. As features are extracted only
for loop closure in approaches like LSD-SLAM [11] and VolumeFusion [47], they are reuti-
lized with high efficiency while they are not only used for refinement and mapping, but also
applied in local and global optimization. In addition, the system exploits fresh areas very
quickly and works well against fast motion blur and pure rotation, furthermore, it is more
robust with moving objects in scene or wide baselines.

3 Semi-direct tracking and mapping

The overview of proposed Semi-direct Tracking and Mapping (SDTAM) is depicted in
Fig. 1 which contains four main parts: direct tracking, feature based mapping, global
optimization, and map fusion.

1. The direct tracking component estimates relative poses of new RGB-D frames with
respect to the last keyframe by minimizing the photometric and depth residuals. This is
very efficient since no features are needed and the pose can be directly optimized from
a coarse-to-fine scheme.

2. The keyframe poses are refined by the feature based mapping component and the
chosen keyframes are inserted to the global map. A local optimization which is a com-
bination of bundle adjust and pose graph optimization is then performed to optimize
the local mappoints and keyframe poses.

3. The global optimization is taken to detect and close loops so that the consistent map
can be obtained.

4. The map fusion unit fuses the keyframes with an octree representation and generates a
textured triangle mesh for real-time visualization.

3.1 Basic notations

In order to make reader easily understand the representation of coordinate and projec-
tion, the symbol definitions are listed in Table 1, and the notations are briefly described as
follows.
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Fig. 1 The framework of the proposed method. RGB-D frames are directly tracked by minimizing both
photometric and depth residuals and a minimization of the proposed measurement errors is taken to refine
the pose of keyframe (KF) with detected keypoints. When frame is accepted, it is inserted to the global map
and a local optimization is performed to optimize the local map. Meanwhile, the loop is detected with a BoW
method based on ORB descriptors and closed by a pose graph optimization. Finally, keyframes are fused to
generate a textured triangle mesh for demonstration and further use

3.1.1 Coordinate definition and transformation

The camera pose is generally represented with a transformation matrix H :

H4×4 =
[
R3×3 t3×1
0 1

]
, (1)

where the rotation R is a 3 × 3 orthogonal matrix R ∈ SO(3), in which SO(3) represents
the 3D rotation group of Lie group [37]. The translation t is a 3×1 vector t ∈ R

3. The trans-
formation matrix H is over-parametrized and has twelve parameters with only six degrees
of freedom. Therefore, a twist coordinate representation μ is given as a member of the Lie
group SE(3) [37]:

μ = (v1, v2, v3, q1, q2, q3)
T ∈ R

6, (2)

where v1, v2, v3 represent translation and q1, q2, q3 are the angular positions corresponding
to rotation matrixR, SE(3) denotes the 3D rigid transformations. The transformationH can
be calculated from μ using the exponential function according to Lie algebra [37]:

H = exp(μ). (3)

To transform a point P = (X, Y,Z, 1)T in the world coordinate to the camera coordinate,
we can use the left-multiplication of matrix H:

P′ = R

⎡
⎣ X

Y

Z

⎤
⎦ + t = HP = exp(μ)P. (4)
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Table 1 The mathematical
symbols and their definitions in
the paper

Symbols Definitions

H4×4 Transformation matrix

SO(3) 3D rotation group [37]

SE(3) 3D rigid transformation group [37]

R 3D rotation matrix

t3×1 3D translation vector

μ Twist coordinate

P, P′ Points in 3D space

PC Point in camera coordinate

p,p′ Pixel positions and depths in the image

x, y Pixel coordinates at x and y axes in the image

d Depth

Proj (·) Projection operator

fx, fy Focal lengths

[·]d The depth part of the measurement

[·]Z The Z component of a 3D point

Ii (p) The value of pixel p in i-th image

rp Photo-metric and depth errors

wp Weight based on t-distribution∑
r Covariance of rp

e Measurement error

3.1.2 Camera projection

The measurement of a world point PC = (XC, YC,ZC, 1)T in the camera-oriented coordi-
nate can be represented as p = (x, y, 1/d)T , including both pixel coordinates (x, y)T and
inverse depth measurement 1/d . The reason of using inverse depth measurements instead
of depth information will be explained in Section 3.3.2.

A standard pinhole camera model is used to represent the projection:

p = Proj (PC) =
(

XCfx

ZC

+ x0,
YCfy

ZC

+ y0, 1/ZC

)T

. (5)

Here fx, fy are the focal lengths and x0, y0 are the coordinates of the camera center in
the standard pinhole camera model.

On the contrary, if measurement p is available, PC can be computed with the inverse
project function Proj−1:

PC = Proj−1(p) =
(

x − x0

fx

d,
y − y0

fy

d, d, 1

)T

. (6)

3.2 Direct based tracking

After the map generated from the first RGB-D frame, the tracking thread computes relative
transformation μji ∈ SE(3) of current new frame Ij against the last keyframe Ki . For each
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pixel p with valid depth information in Ki , try to find its corresponding measurement p′ in
Ij with the warp function:

p′ = warp(μji, p) = Proj (P ′) = Proj (exp(μji) · Proj−1(p)). (7)

Once pixel p′ are in sight of the image, the photometric and depth errors can be defined
as

rp =
[

Ii(p) − Ij (p
′)[

p′]
d

− [P ′]Z
]

, (8)

where [·]d returns the depth part of the measurement, [·]Z means the Z component of a 3D
point, and Ii(p) denotes value of pixel p in i-th image.

The optimized relative pose μ∗
ji can be computed by minimizing both the photometric

and depth residuals:

μ∗
ji = argmin

μ

∑
p∈Ki

wprT
p �−1

r rp, (9)

here �r is the covariance of rp and wp is the weight based on t-distribution pt (0, �, v):

wp = v + 1

v + rT
p �−1rp

. (10)

A coarse-to-fine scheme is employed and the relative pose μji is computed iteratively.
Assuming that relative pose parameters are normally distributed, the information matrix

of μji can be represented by the Hessian matrix A, which means μ ∼ N(μ∗, A−1). To
ensure enough overlap between last keyframe and new frames, a new keyframe is created
when the distance exceeds the fixed threshold. The relative distance is curved by a weighted
combination of translation and rotation described in [11]:

dist (μji) := μT
jiWμji, (11)

here W is a diagonal matrix with different weights for each parameter in μji , and the
translation weights are scaled according to the mean inverse depth.

3.3 Feature based mapping

3.3.1 Pose refinement

The direct tracking system is robust but with inevitable drift after several keyframes. Once
a new keyframe is inserted by the tracking thread, we refine the keyframe pose with the
feature based method. The procedure used to refine the pose can be summarized as follows:

1. Hundreds of (about 1000) keypoints are detected with adaptive fast algorithm and
described with ORB feature descriptors.

2. Matches between last keyframe Ki and current keyframe Kj are found by project-
ing last mappoints to current image, and then current pose μj is updated by the
correspondences.

3. A local sub-map is composed of keyframes which share observations with the current
frame and the final pose μj is determined by tracking the sub-map.

The projection p′ of map point P can be represented as:

p′ = Proj (PC) = Proj (exp(μj )P). (12)

Given a set of matches between 3D map points and RGB-D frame, we can estimate
the camera pose μj . To take the best use of both pixel coordinates and depth information,
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we propose a robust error function to estimate the motion. The error e = (ex, ey, ed)T is
defined as the difference between measurements p = (x, y, 1/d)T and predicted p′ of a
map point P:

e =
⎡
⎣ ex

ey

ed

⎤
⎦ =

⎡
⎣ x

y

1/d

⎤
⎦ − Proj (exp(μj )P). (13)

In ideal circumstances, the residuals should be zero. However, due to measurement
noises, the residuals are distributed according to the probabilistic sensor model p(e|μj ). We
estimate the camera pose μj by minimizing the weighted squared residual function:

μ∗
j = argmin

μj

∑
pi∈Kj

wieT
i �−1

ei
ei . (14)

The weights wi are given to decrease influence of large residuals by the robust Tukey
weighting function, which is based on the robust statistical distribution of the given
associated residuals.

wi =
⎧⎨
⎩

(
1 − rTi �−1

ei
ri

σ

)2

, rT
i �−1

ei
ri ≤ σ,

0, rT
i �−1

ei
ri > σ.

(15)

3.3.2 Determination of �ei

We solve the problem described in the (14) with the g2o framework [15] and thus the
optimized pose μj can be obtained. The information matrix �−1

e adjusts the weights of
geometric error ex, ey and depth error ed . Theoretically, the geometric error and depth error
cannot be optimized together directly, here we give a formulation to transform the depth
error ed to geometric error, so that the information matrix can be identified.

As we know, the Kinect 1.0, one type of RGB-D sensors, obtains depth information with
an infrared (IR) projector and an IR camera, which based on similar mathematics foundation
of the stereo triangulation. As we can see in Fig. 2, point O is the projector origin and P

is the real point with ground-truth depth d corresponding to a projection p in the camera
image plane. d ′ is the depth estimation which results from the measurement p′ and error e.
Assuming the image plane is parallel to OO ′, we add an auxiliary line PG which is parallel
to OO ′. The following equations can be obtained from the triangle similarity relationship:{

e
D′ = f

d
,

d ′−d
D′ = d ′

D
.

(16)

Here f is the focal length and D is the distance between projector center and camera
center. With further derivation we can obtain:

e = f D′

d
= f D(d ′ − d)

d ′d
= f D(1/d − 1/d ′). (17)

It explains the reason why the inverse depth rather than depth is used for optimization.
Assuming the reprojected residuals are independent with an identity covariance, from the
equation we can identify the information matrix�−1

e = diag(1, 1, (f D)2). Since we detect
keypoints on different levels of pyramid of images, the information matrix is also associated
with the scale of image in practical circumstances. For different keypoints pi in the (14),
the information matrix �−1

ei
= f ac−li �−1

e . Here f ac is the scale factor of pyramid, and li
means the level where keypoint pi is detected.
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Fig. 2 The transformation from depth error d ′ − d to pixel based error e

Although the above procedure is generally good enough to estimate the camera motion,
further improvement can also be achieved just using the projection residual for points
without depth information. Some corresponding points may not contain valid depth mea-
surements (the depth value is assigned to be zero when it is not valid), these points may get a
small weight and be ignored because of the huge residual. Since they still catch useful pixel
coordinates information, we treat them with a different �e where ed has a large variance so
that RGB data is still used.

3.3.3 Keyframe insertion

After the pose μj of keyframe Kj is refined by tracking the local mappoints, we insert it to
the map if the estimation is good enough and mapping thread is idle. Several procedures are
conducted for a keyframe insertion:

1. BoW computation: The BoW vector is computed and registered to a database for tri-
angulation, loop closure detection and relocalization. We use the approach DBoW2
[32] proposed by Rául et al., which is comparable to the well-know Fast Appear-
ance Based Mapping (FAB-MAP) [14] but based on ORB descriptors with better
efficiency.

2. New map points creation: We try to estimate the world coordinate P of keypoint p

with the inverse project function P = Proj−1(p). For keypoints without valid depth
information, we find their correspondences by epipolar search in nearby keyframes and
obtain their 3D positions from triangulation.

3. Data association: After new mappoints created, their correspondences in neighbor
keyframes are found by projection and new observations are added. Once the corre-
sponding keypoints refer to existed mappoints which should be the same mappoint,
they are combined together for reducing redundancy.

4. Bad mappoints culling: Although the proposed matching method based on projection
is pretty robust with very few outliers, bad mappoints are inevitable and should be
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removed since they are harmful to pose optimization. A mappoint that meets one of the
following conditions is regarded to be bad:

(a) It contains less than 2 observations.
(b) It is observed by less than 3 keyframes and with found ratio below 0.2 after local

optimization.

Since outlier observations will be removed after local optimization, a point is checked
for several times to make sure it is reliable.

5. Nearby keyframes tracking: The connections of keyframes are updated according
to the number of shared observations. Next, nearest neighbor keyframes are selected
and they are tracked directly using the method introduced in Section 3.2. The tracking
results are regarded as constraints for successive procedure.

3.3.4 Local optimization

A local optimization is performed to refine the current keyframe Kj and its connected
keyframes Kc with all map points P seen by them. Keyframes Kf that see these points are
also included but remain fixed during optimization. The optimization is performed with a
combination of local bundle adjustment and pose graph optimization:

{μ,P} = argmin
μ,P

∑
Pi∈P

∑
Kj ∈KL

wij eT
ij�

−1
eij eij

+ k
∑

Ki,Kj ∈KL

(μ−1
i μijμj )

−1�−1
ij (μ−1

i μijμj ), (18)

where KL means all the local keyframes Kj ∪ Kc ∪ Kf and k is the pose graph factor used
to adjust weights of direct odometer constraints.

3.4 Global optimization

Loop closure and global optimization are always demanded for incremental frame-to-frame
tracking approaches due to the drift accumulation [8, 27]. A small drift in the motion
estimation could lead to intolerable error over keyframes.

The DBoW2 [32] package is adopted for loop detection in this work. We collect all
keyframes sharing words with current keyframe and compute the similarity between them,
while all the neighbor keyframes that already share observations are discarded. Then the
candidates are sorted according to the similarity. In order to gain robustness, they are cho-
sen to be loop candidates only if its neighbors are also candidates to gain robustness. For
remaining candidates, we find their correspondences with current keyframe and compute
a coarse relative transformation using RANSAC. Once a candidate with enough inliers is
found, we accept the loop and optimize the relative pose by projection matching.

After the loop is detected, a data association step is firstly performed to fuse dupli-
cated mappoints and add new observations. The approach introduced in Section 3.3.4 could
be used to optimize poses of both keyframes and points, but it is computationally expen-
sive because of too many edges. Since bundle adjust approach takes too much time for
global optimization, a pose graph optimization described in [40] is adopted to close the
loop effectively. An undirected weighted graph is used to describe the co-visibility infor-
mation between keyframes, while a keyframe is presented as a node and an edge represents
the relative transformation between the two linked keyframes. An edge exists if two linked
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keyframes share some mappoints, and its weight is defined as the number of the shared
mappoints. This approach retains preciseness which benefits from local optimization and
requires small computation. Since it only optimizes the keyframe poses, the related map
points should be transformed after the graph optimization. Figure 3 illustrates the loop
fusion results of sequence fr3/near from TUM datasets [41] which shows a consistent map
is obtained after the loop is closed.

3.5 Relocalization

Although great efforts are applied to the tracking system to make it as robust as possible,
it may still fail in some conditions. Once the tracking is lost, a relocalization procedure
should be done to recover tracking system from failure. The BoW vector is computed and
keyframe candidates are sorted as introduced in Section 3.4. A coarse motion is estimated
with RANSAC algorithm based on correspondences between current frame and candidates.
If enough inliers are found, tracking could continue based on the estimated pose.

3.6 Map fusion

In order to manage point clouds effectively, the volumetric 3D mapping algorithm [39] is
used for display, path planning and obstacle avoidance. Different from most existed imple-
mentations that heavily rely on GPUs, this method generates triangle meshes with textures
from a signed distance function and runs on a standard CPU in real-time, which makes it
is suitable on platforms like embedded devices or MAVs. For achieving better computation
performance the procedure is only performed after keyframe insertion.

4 Experiments and results

We evaluate the proposed approach on two widely used RGB-D benchmarks TUM [41] and
ICL [24] since they both provide synchronized ground-true poses which can be adopted to
evaluate the tracking accuracy. Because the ground-truth point cloud model is provided in
ICL, the reconstruction accuracy is also compared. However, both of TUM and ICL do not

Fig. 3 Comparison results before and after loop fusion of sequence fr3/near. The mappoints (green) before
(left-top) are not in one plane and their positions are corrected after loop closed (right-top). The texture is
not aligned correctly before optimization (left-bottom) and seems well after (right-bottom)
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(a)

(c) (d)

(b)

Fig. 4 The reconstruction results of fr3/office sequence of TUM dataset. a The reconstruction result seen
from top of the desk where mappoints are green and keyframes are blue. b The detail of fusion mesh result
demonstrates high accuracy of our system. c The two-dimensional plot of estimated trajectory compared
against ground truth trajectory. d The relative pose error (RPE) plot indicates a small drift of our approach

contain large-scale sequences, so that experiments on large sequences captured by ourself
are also conducted. The dataset is public available on the website and some results based
on the dataset are shown in Section 4.3. To demonstrate the computation performance of
our algorithm, the time usage statistics results are illustrated in Section 4.4. We also offer a
demonstration video at youtube.1

4.1 Experiments on TUM

TUM dataset [41] has 39 sequences which are captured in two different indoor environ-
ments. It contains ground-truth trajectory frommotion capture system and provides tools for
trajectory accuracy evaluation. The results of the proposed method on fr3/office sequence
is depicted in Fig. 4, where the mappoints are shown in green, keyframes in blue, current
keyframe in red, and keyframe connections in sky-blue. Lots of details including the bear
doll, the pen and books on the desk are shown clearly in Fig. 4b, which indicates high accu-
racy of the proposed method. The ground-truth and estimated trajectories are depicted in
Fig. 4c and they are almost identical. We plot the relative pose error in meters with respect

1https://youtu.be/Gy eA1a86cU

https://youtu.be/Gy_eA1a86cU
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(a)

(b)

(e)

(d)

(c)

Fig. 5 More results of our algorithm on TUM dataset illustrate the reconstruction outcomes (1st column),
fusion details (2nd column), trajectory comparisons (3rd column), and relative pose errors (4th column). The
blue lines in the first column images represent the tracked trajectories, and cyan lines show the local connec-
tions between keyframes. The white areas in the images of first and second column images are caused by the
RGB-D camera cannot provide depth values at those areas. Therefore, some regions are not reconstructed

to time in Fig. 4d and most translation errors are below 1.5 cm, which indicates the small
drift of our algorithm. Some more results of other sequences are illustrated in Fig. 5.

The root-mean-square-error (RMSE) introduced in the TUM RGB-D benchmark [41]
is used to evaluate the trajectory accuracy of the direct tracking odometer described in
Section 3.2, and results of our system with or without loop fusion are provided in Table 2.
In addition, we compare our method to four state-of-the-art approaches: RGB-D SLAM
[8], KinectFusion [34], direct visual odometer (DVO) [27], and VolumeFusion [47]. The
table lists RMSE of the absolute trajectory error (unit is m) for different methods, where
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Table 2 Comparison of absolute trajectory error (ATE) of proposed method and four state-of-the-art
approaches

SDTAM (Ours) Kinect RGB-D Volume

Sequence name Direct Direct+KF Direct+KF+Loop DVO [27] Fusion [34] SLAM [8] Fusion [47]

fr1/xyz 0.054 0.011 0.011 0.011 0.026 0.014 0.017

fr1/rpy 0.086 0.031 0.031 0.020 0.133 0.026 0.028

fr1/desk 0.055 0.018 0.018 0.021 0.057 0.023 0.037

fr1/desk2 0.117 0.043 0.043 0.046 0.420 0.043 0.071

fr1/room 0.305 0.205 0.084 0.053 0.313 0.084 0.075

fr1/plant 0.039 0.072 0.034 0.028 0.598 0.091 0.047

fr2/xyz 0.017 0.015 0.015 0.018 – 0.008 0.029

fr2/person 0.180 0.079 0.079 – – – -

fr3/long 0.104 0.018 0.010 0.035 0.064 0.032 0.030

fr3/nst 0.045 0.020 0.013 0.018 – 0.017 0.031

fr3/far 0.010 0.009 0.009 0.017 – – -

fr3/sit xyz 0.028 0.008 0.008 – – – -

fr3/sit halfsph 0.116 0.012 0.012 – – – -

fr3/walk xyz 1.436 0.011 0.011 – – – -

fr3/walk halfsph 0.649 0.060 0.060 – – – -

The measure metric is root-mean-square-error (RMSE) and the unit is meter (m). From the results, the
proposed method outperforms other methods. In the table, ‘Direct’ represents the results of direct track-
ing, ‘Direct+KF’ means the method that refines keyframe poses with the feature-based method and local
optimization while global optimization is not included, and ‘Direct+KF+Loop’ denotes the results based
on ‘Direct+KF’ with global optimization and loop closure detection. The above mentioned three columns
show results of different combinations of key techniques in the proposed SDTAM. The last four rows results
indicate that our system remains high accuracy and robustness in situations with moving objects

our approach achieves the best accuracy. Some of rows get the same RMSE with or with-
out loop fusion since no loop is detected in these sequences. It should be noted that our
approach could handle pure rotation and even works well in sequences with strong motion
blur and fast rotation movements such as fr1/desk. Especially in sequences of fr3, our sys-
tem achieves remarkable preciseness with very small drift and obtains much smaller RMSE
over hundreds of keyframes in fr3/office sequence than other approaches even without loop
fusion. We consider that this is resulted from that images in sequences of fr3 are undistorted
while other sequences not and an ideal pinhole camera model is used in this paper. And
thanks to the error function based on measurements introduced in Section 3.3, our method
can obtain the optimal estimation that makes the best use of measurements. The results in the
last four rows indicate that our system remains high accuracy and robustness in situations
with moving objects while direct odometer drifts a lot in these sequences.

4.2 Experiments on ICL

As referred in paper [24, 47], an algorithm achieving state-of-the-art trajectory accuracy on
a camera trajectory benchmark does not always imply a high-quality surface reconstruction
due to the frame-to-model tracking component of the system. To evaluate the accuracy of
3D reconstructions, the ICL dataset [24] provides a ground-truth point cloud model for
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(a)

(b)

(c)

(d)

Fig. 6 The reconstructed surface evaluation results for all four trajectories on the living room dataset. The
left images demonstrate the fusion results of the reconstructions. The point clouds are color coded with
respect to the obtained ICP error and the histogram statistics are shown in the right column

the living room sequences. We save our mesh model from fusion to an .obj file and align
the sampled cloud points to the ground true model using ICP with CloudCompare,2 an
open source software used to compare the ground truth model with the reconstruction result
and compute reconstruction statistics. The living room dataset contains four sequences, and
the evaluation results of all reconstructions are plotted in Fig. 6. The heatmaps show the
differences between our reconstructed mesh and the ground-truth model, in which blue

2http://www.danielgm.net/cc/

http://www.danielgm.net/cc/
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Table 3 RMSE (cm)
comparison of the absolute
trajectory error (ATE) to five
other systems

System kt0 kt1 kt2 kt3 Average

DVO [27] 10.4 2.9 19.1 15.2 11.9

RGB-D SLAM [8] 2.6 0.8 1.8 43.3 12.1

MRSMap [42] 20.4 22.8 18.9 109 42.8

Kintinuous [46] 7.2 0.5 1.0 35.5 10.9

ElasticFusion [48] 0.9 0.9 1.4 10.6 3.4

SDTAM (Ours) 0.8 1.1 1.2 1.8 1.2

indicates small error and red indicates large error. We also compute the histogram statistics
with color for all the cloud points and illustrate them in Fig. 6.

We compare our approach to five other state-of-the-art SLAMmethods: DVO [27], RGB-
D SLAM [8], MRSMap [42], Kintinuous [46], and ElasticFusion [48]. The RMSE statistics
of the ATE are listed in Table 3 and comparison results of surface accuracy are summarized
in Table 4, which proves that our method obtains higher accuracy on both trajectory and
surface evaluations. Especially in sequence kt3, our system fuses a loop and keeps high
accuracy while most approaches show poor performances.

4.3 Experiments on NPU

Above experiments use datasets of small workspaces, in order to evaluate the ability of han-
dling large-scale data, we test the proposed method on several sequences which contain long
trajectories. The dataset3 is recorded by a Kinect for XBOX 360, which contains several
sequences in the campus of Northwestern Polytechnical University.

The dataset contains three sequences:

1. NPU/ShelvesSmall: The sequence contains two loops with some repetitive scenes and
its trajectory is about 40 meters.

2. NPU/Shelves: The scene of this sequence is a large room in the library with hundreds
of shelves, which is highly repetitive and the trajectory is about 100 meters long with
two loops.

3. NPU/LibraryFloors: This sequence consists of two floors in the library hall with an
over 100 meters long trajectory.

Each sequence is composed of colorful and depth image pairs which have been aligned
with OpenNI. This is a challenging dataset since it contains fast motion, rolling shutter,
repetitive scenes, and even poor depth informations. In our experiments, the camera is
calibrated and the parameters are offered in the dataset.

Our system runs in real time on the entire dataset and some of reconstruction results are
demonstrated in Figs. 7, 8 and 9. Figure 7 shows the result of sequence NPU/ShelvesSmall
which contains two loops with strong visual aliasing that may lead to wrong loop detection.
From the resulting image, we can see that the proposed method can successfully detect the
loop and output correct trajectory. The result of sequence NPU/LibraryFloors is depicted in
Fig. 8. The sequence captures the scene just containing planar objects which might lead to

3The NPU dataset is public available at http://adv-ci.com/rgbd/npu/

http://adv-ci.com/rgbd/npu/
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Table 4 Comparison of surface
reconstruction quality for all
sequences of living room dataset

System kt0 kt1 kt2 kt3 Average

DVO [27] 3.2 6.1 11.9 5.3 6.6

RGB-D SLAM [8] 4.4 3.2 3.1 16.7 6.8

MRSMap [42] 6.1 14.0 9.8 24.8 13.7

Kintinuous [46] 1.1 0.8 0.9 15.0 4.4

ElasticFusion [48] 0.7 0.7 0.8 2.8 1.3

SDTAM (Ours) 0.7 0.6 1.2 1.1 0.9
The mean distances (cm) of ICP
errors for the point clouds are
illustrated

the failure of strong depth-relied method, e.g. KinectFusion. But our approach successfully
reconstructs the scene, because our method utilizes both the information from the image
and depth, and consequently better robustness can be realized. Figure 9 shows the proposed
method correctly detects two loops in the scene, which consists of many repetitive objects.

4.4 Computational performances and parameters

To evaluate the computational performances of our algorithm, the time usage statistics for
some important functions are measured and analyzed. Experiments are performed on a
notebook running 64-bit Linux, where the hardware includes Intel Core i7-4710 CPU with
2.50GHz and 16 GB RAM. The sequence fr3/office is used as the evaluating data due to
the fact that both loop fusion and relocalization are included. The time usage statistics of
this sequence with 1000 and 500 keypoints in each keyframe are listed in Tables 5 and 6,
respectively. Although most of the data used in the experiments are captured fromMicrosoft
Kinect RGB-D sensor, the proposed method is not limited to the Kinect. The data captured
from other RGB-D sensors such as Intel Real-Sense or Prime-Sense can also be processed
using the proposed method to implement real-time SLAM. The difference of using various
RGB-D sensors is adopting their own camera calibration coefficients.

As we can see from the statistics, it only takes about 15 ms to track a new frame directly
with one separated thread on CPU, which means that the system easily achieves real-time
on a normal computer and has great potential to remain real-time on embedded systems like
cellphones and robots. It takes 64.4 ms to refine a keyframe with 1000 keypoints in average,
including the feature detection, keypoint matching, and pose optimization. The mapping

Fig. 7 The reconstruction result of sequence NPU/ShelvesSmall. The sequence contains two loops with
some repetitive scenes and its trajectory is about 40 meters
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Fig. 8 The reconstruction result of sequence NPU/LibraryFloors. The sequence consists of two floors in the
library hall with an over 100 meters long trajectory. The reconstructed mesh contains 19,169,329 points and
23,246,188 faces

thread handles keyframe insertion with an average time of 145.9 ms (1000 keypoints) and
local optimizations are performed in the spare time with 208.2 ms in average taken. The
global optimization thread detects loops with 6.5 ms for each keyframe in average and takes
594.9 ms to correct the loop detected.

Fig. 9 The reconstruction result of sequence NPU/Shelves. From the results, we can conclude that the
proposed method detects two loops successfully under the highly repetitive scene over 100 meters
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Table 5 Time statistics of
sequence fr3/office with 1000
keypoints detected

Function Count Min Mean Max Total

DirectTracking 2484 5.4ms 14.5ms 35.8ms 35.9 s

PoseRefinement 319 36.3ms 64.4ms 192.3ms 20.6 s

KeyframeInsertion 308 0.0ps 145.9ms 328.6ms 44.9 s

LocalOptimization 232 3.4ms 208.2ms 2.4 s 48.3 s

LoopDetection 306 131.0us 6.5ms 24.1ms 2.0 s

LoopClosure 1 594.9ms 594.9ms 594.9ms 594.9ms

FuseOneFrame 306 34.2ms 75.0ms 894.6ms 23.0 s

Relocalization 1 39.0ms 39.0ms 39.0ms 39.0ms

In summary, the computational complexity of the direct tracking isO(nw×nh)where nw

and nh represent the image width and height. The computational complexity of keyframe
processing is O(nk) where nk is the number of keypoints. Therefore the proposed method
can achieve real-time speed due to the linear computation complexity.

The computational performance of tracking compared with other methods is listed in
Table 7. From the comparison, we can conclude that most of the methods can achieve real-
time tracking with the frame-per-second of 30 or above. However, it should be noted that the
comparison is not precise because different methods use different measurement methods.
In addition, the time statistics are measured using different computers.

While most of parameters can be identified automatically, users need to adjust the
keypoints number for each frame and W in the (11). Theoretically, higher accuracy can
be obtained with more keypoints but faster with less keypoints. Therefore, a good bal-
ance between accuracy and speed can be achieved through selecting an optimal keypoints
number. In the previous experiments, 500 and 1000 keypoints are used to evaluate the per-
formance, while other experiments just use keypoint number of 1000. The W is a 6 × 6
diagonal matrix which controls the weights for calculating moving or rotating difference
between keyframes. In the implementation, we evaluate different values and find that they
are not affecting the overall accuracy. Different values in W just cause different keyframe

Table 6 Time statistics of
sequence fr3/office with 500
keypoints detected

Function Count Min Mean Max Total

DirectTracking 2484 4.7ms 14.9ms 33.7ms 37.1 s

PoseRefinement 320 19.6ms 34.2ms 106.6ms 10.9 s

KeyframeInsertion 322 0.0ps 68.5ms 183.2ms 22.1 s

LocalOptimization 312 1.5ms 182.3ms 1.4 s 56.9 s

LoopDetection 320 65.0us 2.7ms 12.3ms 855.5ms

LoopClosure 320 306.7ms 306.7ms 306.7ms 306.7ms

FuseOneFrame 320 31.4ms 75.5ms 600.3ms 24.2 s

Relocalization 1 12.8ms 12.8ms 12.8ms 12.8ms
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Table 7 Computational performance of tracking for some recent methods

Method Tracking time (ms)

RGB-D SLAM [8] 350

DVO [27] 32

KinectFusion [34] 15 (with 3203 volxel resolution)

VolumeFusion [47] 30

SDTAM (Ours) 15

The time unit is milli-second. It should be noted that the comparison is not precise because different methods
use different measurement methods. In addition, the time statistics are measure using different computers

numbers, which may slightly affect the computational performance. In our experiments, for
all sequences we set the W to be an identity matrix that performs well.

5 Conclusions

In this paper we present a novel SLAM approach for RGB-D cameras with high efficiency
and accuracy as a result of the seamless combination of direct and feature based methods.
The system remains robust in challenging conditions with motion blur, fast pure rotation,
and large moving objects. The evaluation results show small drift and high accuracy on
both trajectory and reconstruction thanks to the novel error function, which is based on
measurements that both geometric and depth informations are utilized in the framework.
Furthermore, the proposed method can achieve real-time speed without the use of GPU, and
it can be easily applied to embedded systems.

Although the proposed method achieves good performances on accuracy and robustness,
there are some improvements can be made in the future. First, the fusion just adopts the
keyframe, therefore, the resulting 3D model is not smooth when the system is doing explor-
ing tasks and limited keyframes is available. Second, the fusion procedure adds meshes
incrementally, thereby it may fail in dynamic scenes. To make the RGB-D SLAM system
more robust, in the following researches semantic information will be extracted from cap-
tured data and novel SLAMmechanics will be explored to further improve the accuracy and
robustness.
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